Siirry sisältöön

German Industry Wants Others to Pay for Energiewende Costs

Germany has been an industrial powerhouse since it rebuilt its manufacturing capacity after the Second World War. Now, because of yet another ideological misventure called “The Energiewende”, it risks losing its industrial competitiveness once more. And it wants everyone to split the bill.

In 2020, when the German EU presidency was upon us, German energy-intensive industries raised their voices in lobbying. Metal-processing industries[1] as well as other energy-intensive companies[2] called for what they call “A European power price for industry.” It is, in essence, just that: a common electricity price for industrial power users in EU.

As a reason for this, the industries state that power prices in Germany are too high and fluctuating. This is, of course, a direct result of German energy policy of closing nuclear power and adding renewables with the help of significant feed-in-tariffs and other subsidies. The situation will likely only get worse as Germany closes the rest of their nuclear power plants prematurely in 2021 and 2022 and struggles to meet its emissions reduction targets by adding more variable renewable energy production.

Right now, German energy intensive industries are exempt from paying the EEG surcharge that is used to pay the tariffs for renewable energy producers. As Germany needs more and more of wind, solar and biomass to get to their emissions reduction targets, while simultaneously ensuring grid stability gets harder and costlier, the energy intensive industries are maybe seeing the writing on the wall: they will need to start chipping in sooner or later, increasing their energy costs further.

All of this would hurt German industrial competitiveness, jobs, perhaps push more investments into other EU countries with stable and low-cost electricity down the road. No wonder they suggest a common electricity price for EU industry.

Now, solidarity is one thing, but this is something the German government knowingly wanted, planned for, and meticulously implemented in their country. It is no accident, nor is it anyone else’s doing. You made your bed, now you lie on it. Or if you want things to be different, then you change them within Germany, not by exporting your problems to your neighbors.

Further, the Germans have been pushing their Energiewende and anti-nuclear agenda on everyone else for decades. They have systematically worked to get nuclear excluded from EU taxonomy on sustainable financing, Green New Deal and Covid-relief programs, making nuclear more expensive and discouraging anyone from investing in it and making decarbonization needlessly expensive for everyone. And now they want everyone to also pay for their domestic mess?

Other EU countries should perhaps go opposite direction and start serious nuclear programs, along with renewable energy programs most already have. Not only would this help keep EU on track to meet its climate targets, it might indirectly help Germany and other anti-nuclear countries in EU as well. The more we have low emissions energy supply, the lower prices for emissions credits in the emissions trading system (ETS) will be. As the EU agreed on tightening its emissions reduction targets to better comply with the Paris agreement we have signed, the ETS prices have skyrocketed from their 2020 levels in 2021. As Germany and other no-nuclear countries are bound to be more reliant on fossil fuels to keep their lights on and industry humming while they build-up their renewable energy sources, this can be good news for them as well.

ENDNOTE: I wrote this piece already back in 2020, but forgot to publish it anywhere so that’s why it is a bit dated in places. I did do some minor updates.



Chernobyl Nuclear Accident – What Happened?

The Dark Horse – Nuclear Power and Climate Change

This is a sample chapter from our recent book The Dark Horse – Nuclear Power and Climate Change (link to Amazon store). The book was published in 2020, and this article came out on the 35th anniversary of the Chernobyl accident. It is our effort to counter the misinformation out there regarding the most serious nuclear accident of our history and what its impacts are.


By far the most serious nuclear power plant accident happened on 26th of April, 1986, in Chernobyl nuclear power station, in what is currently Ukraine. The hydrogen/steam explosion in the core and the fire that followed spread large amounts of radioactive matter to the immediate surroundings as well as farther away. Some emergency workers received radiation doses so high that they died due to acute radiation poisoning and its later complications during the next few years. The raging fire in the core lifted the lighter radioactive particles high into the air and during the following days, winds blew them across Europe, where they fell with rainfall.

The fallout was so severe in the nearby areas that people had to be evacuated. Officials should have distributed iodine pills to the public and advised them not to eat vegetables or drink milk produced in the area, since they were contaminated with iodine-131. But Soviet officials dropped the ball. Without their paranoid secrecy on all things nuclear, the health effects would have been much lower.

As it is with all things, nuclear reactors can be designed well, or less well. They can also be designed horribly. This category is reserved for the RBMK, which was the type of reactor in Chernobyl. It was designed in the 1950s, and all the Soviet scientists had to work with were the small “graphite piles” that were used to produce plutonium for the weapons program. The main goals for the RBMK were low costs and flexible operation. Low cost was achieved by making the reactor very large and allowing it to use uranium fuel that did not have to be enriched to similar levels as the fuel for western reactors. Flexible operation meant that the reactor could be refuelled without shutting it down. This had two goals: the primary goal was to minimize interruptions to power production. The secondary goal was to make it easier to use the reactor for weapons grade plutonium production, should the need arise.

These parameters led to using graphite as the moderator for the nuclear reaction instead of heavy water, which was four times as expensive. The reactor ended up being very large, so it would have been very expensive to build a containment building around it. Some have estimated it would have doubled the cost of the reactor. So containment was left out. Costs were also cut by leaving additional safety systems to a minimum. The prevailing Soviet doctrine concluded that containment buildings and safety systems were unnecessary, since in principle the RBMK was completely safe, provided it was operated exactly according to the instruction manual.

However, even that manual omitted some important weaknesses of the RBMK, which were never told to the operators. The design choices combined with the use of low-enriched uranium fuel meant that the reactor could become unstable in certain conditions. Most reactors are designed in a way that if the coolant (often water) is removed, the reactor shuts down. With RBMK, the opposite happens. If the cooling water turns to steam and the cooling system dries up even partially, the chain reaction in the core accelerates. If reaction controls do not operate fast enough or if they are turned off, this will lead to even more water turning to steam, accelerating the chain reaction further, which will eventually lead to a meltdown. This was especially likely when the reactor was operating at lower power, during which the coolant pressure and boiling point were lower.

Finally, the control rods of the reactor were badly designed. The tip of the rod was made of graphite, which accelerates the reaction. When inserting a completely removed rod into the reactor, the fission reaction accelerates for about five seconds before starting to slow down. This was not a big problem when a single rod was inserted. But inserting all 211 control rods at the same time to the reactor operating at full power had catastrophic effects. To top it all off, the mechanism of inserting the control rods was slow even by 1980s standards. Western designs of similar age inserted control rods in three seconds, while the same operation took RBMK some 20 seconds.

The people at the Kurchatov Institute who designed the reactor were not stupid, and they were well aware of the inherent problems in their design. The Soviet officials did not want to hear of any problems, however. Everything nuclear was by definition top secret in the Soviet Union, and the operating principles of the RBMK were no exception. Reactor operators were forbidden to discuss any possible problems with each other. So when the operators at the Ignalina nuclear power plant discovered the problem with the control rods in 1983, they told no one about it. Nobody imagined that someone would manually turn off all the safety features and then run the reactor at dangerously low power.

Chernobyl – What happened?

A safety experiment was scheduled for reactor 4 in the Chernobyl nuclear power station in April 1986. The goal of the experiment was to ensure that the reactor could be cooled if there was a power loss during a shutdown. Previous experiments had failed, and the politically appointed management, who had only superficial knowledge of nuclear power, were hard-pressed to make certain that this time the experiment would succeed. Partly due to the embarrassing former failures, and partly due to the low perceived risk, Soviet nuclear safety officials were not notified of the experiment.

The plan was to run the reactor at a low power level of 700 MW (thermal), and then cut the flow of steam to the generator. The generator, running at full tilt, would keep on spinning, and its behaviour would be monitored and measured. This would help ensure that the power it generated would be enough to keep the coolant pumps running long enough for the diesel-powered backup generators to start up.

It was planned that the reactor would be powered down slowly to the desired level during the early morning hours of 25th April. From there, the dayshift, who had been familiarized with the experiment, would be able to take over and start the experiment. As the day shift came in, another power station got dropped from the grid, and the grid operator in the area asked Chernobyl operators to postpone the experiment. This was agreed on, but the preparations were kept underway, and even some of the safety features were turned offline in advance. The grid operator gave permission only late that night, at 23:04, to continue with the powering down. The day shift was long gone, and even the evening shift was starting to leave. The night shift that had just arrived got orders to go ahead with the experiment as soon as possible. The reactor power level was promptly lowered. Here one of the operators made a mistake: he pushed the control rods in too deep, and the reactor was practically shut down.

The experiment could not be carried out with a reactor that was shut down, and the operator managing the experiment demanded swift action. The automatic system that moved the control rods in the core was turned off (an essential safety feature in the RBMK). Most of the rods were then pulled out from the core manually. The chain reaction kicked in, and in a few minutes the power level increased to 160-200 megawatts thermal. This was not enough for the experiment, and the automatic warnings were bypassed, more rods were pulled out and preparations for the experiment were continued. Numerous warnings came on, but the operators did not realise that the momentary shut down and other preparations had caused the reactor to go unstable and unsafe for the experiment, which could only be remedied by letting the reactor run for a while on a higher power level.

The experiment was then started by cutting the steam flow to the generators. The generator slowed down and the power to the pumps responsible for the pressure and circulation of coolant water went down. As the pressure went down, the boiling point of the circulating water lowered. As the water started to boil and turn to steam, the chain reaction in the RBMK accelerated – which is the opposite of what happens in most other reactors. Apparently, nobody had told the operators of this critical “feature” of the RBMK.

As the chain reaction accelerated, the automatic safety system started lowering control rods into the reactor to keep the power more stable. But only 12 rods had been left to be controlled by the automatic system, while the other 199 rods were on manual control and drawn completely out of the reactor. 36 seconds after the experiment was started, the 12 rods were fully inserted, but the power level kept increasing. At this point, someone decided to initiate emergency shutdown.

Emergency shutdown started pushing all the remaining rods into the reactor at once. Due to the bad design of the control rods we mentioned earlier, this accelerated the nuclear reaction for a few seconds before it would slow down, especially with many rods being pushed in at the same time. Although this “feature” had been noted three years earlier in the Ignalina power plant, nobody had shared the information with Chernobyl operators. The reaction accelerated so fast that at least part of the rods overheated and got stuck before the part of the rod that would slow down the reaction got inserted into the reactor.

During the next few seconds, the chain reaction went hypercritical and totally out of control. The power level indicators showed 33,000 megawatts, while the reactor’s designed operational power was 3,200 megawatts. It is impossible to reconstruct what happened next, but the best guess is that the tremendous heat energy produced caused a massive steam explosion, which popped the 2,000-ton top of the reactor vessel through the roof of the reactor building. This explosion wrecked the rest of the cooling systems in place, and the RBMK pulled one last trick from its sleeve: With all cooling gone, nothing held back the chain reaction. Another, even more massive explosion destroyed the reactor core and sent the highly radioactive fuel and graphite pieces around the compound. As air was drawn into the torn reactor core, the red-hot graphite started burning. Despite heroic and quite literally self-sacrificing actions of the emergency workers, the graphite burned for two weeks, sending most of the remaining radioactive materials high into the atmosphere and surroundings.

The following morning, Soviet leaders woke up, knowing nothing of what had happened and at what scale. It was not unusual in the Soviet Union that environmental destruction or accidents went unreported, and the nuclear program was especially sensitive. The scale of what occurred started unwinding when Finnish border control officials noticed abnormally high radioactivity levels. This information was forwarded to the prime minister Kalevi Sorsa, who decided not to publicize the matter, as it would probably only antagonize Soviet Union.

The following morning, 27th of April, the radiation alarms in the Swedish Forsmark nuclear power station went off. The source was found to be the dirt from one employee’s boots, which carried radioactive fallout from Chernobyl brought to ground by rain. In cooperation with Finland, the Swedes located the likely source to be a nuclear power plant accident in western Soviet Union. The fallout spread all over Europe, and the cesium-137 can still be measured in many places. As denial finally became impossible, Soviet officials had to admit to the world that the accident had happened.

Pripyat, a town near the Chernobyl nuclear power station, was evacuated in the afternoon of 27th April. Kiev, which was 90 kilometres (55 miles) away from Chernobyl, went on preparing their parade for the 1st of May. Nobody was giving the public iodine tablets, even though it was clear that the destroyed reactor had leaked large amounts of iodine-131. Iodine-131 is a radioactive isotope that is often the most dangerous radiological consequence of nuclear accidents, but also easily prevented from causing harm by giving the population iodine tablets. It also disappears in a few weeks. A short notification about the accident was finally read in the evening news of 28th April, but there still was no mention about any dietary restrictions.

It is common to see the Chernobyl accident referred to as a typical example of how dangerous nuclear reactors can be. This has little to do with facts and a lot to do with perceptions. This type of reactor, with the unique properties that led to the accident, has not been built in decades, and was only built in the Soviet Union. While there are still a few such reactors operating, they have all been retrofitted with improved safety measures. One rather surprising and even scary fact remains less discussed: Chernobyl reactors 1, 2 and 3 remained in operation even after the accident. Reactor 3 was the last to shut down, in December 2000. It would be wise to replace the remaining operating RBMK’s with safer designs as soon as possible.

Recently, many people have seen or heard of the HBO mini-series about the Chernobyl accident. While highly entertaining, it is also fictitious in some important ways. Jaakko Leppänen, a research professor of nuclear technology at VTT Technical Research Centre of Finland Ltd, wrote a simultaneous blog as the original episodes were aired, fact-checking the events as they unfolded in the mini-series. The blog can be read here:

Health impacts of Chernobyl

Chernobyl has claimed a few dozen lives, according to the World Health Organization and United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). According to UNSCEAR’s latest, most comprehensive report[i] to date on Chernobyl:

  • 134 plant staff and emergency workers suffered acute radiation syndrome (ARS) from high doses of radiation.
  • In the first few months after the accident 28 of them died.
  • Although another 19 ARS survivors had died by 2006, those deaths had different causes not usually associated with radiation exposure.
  • Further, some 6,000 thyroid cancer cases were reported in the three most affected countries of Belarus, Ukraine and four most affected regions in the Russian Federation. 15 of them had proven fatal, although very likely not all of them were caused by the Chernobyl fallout.

At most, there are 62 confirmed fatalities from the worst nuclear accident in our history. Statistically, there might be some 4,000 extra fatalities all in all due to the low doses of radiation spread around, according to some LNT models. However, these models have what the UNSCEAR calls unacceptable uncertainties at these low doses and has recommended that they are not used for epidemiological purposes[ii],[iii].

The cleaning up afterward was done by roughly 600,000 “liquidators”, of whom only a small number received significant amounts of radiation. Iodine-131 was the largest health hazard for those living in the surrounding area. As we know, iodine-131 has a short half-life so it was essentially gone in two months. The risk on the longer time frame is from fission products such as cesium-137 which has a half-life of 30 years and caesium-134 with a half-life of two years.

Luckily, these health risks are proving to be less serious than many have thought. Around 6,000 thyroid cancers have been diagnosed (up to 2005) in the group most at risk (mainly children living in nearby areas), with 15 fatalities. Even as most thyroid cancers were treated successfully, almost all cancers could have been avoided with prompt actions by the government to distribute iodine pills.

Very small doses were delivered to a larger population of around 5 million; the LNT model suggests 5,000 could die prematurely. Even smaller lifetime doses, in the neighbourhood of 1 mSv or less (a week or so in Pispala), are estimated to have been delivered to hundreds of millions of people living in Europe and the rest of the world. The Union of Concerned Scientists has done their own calculations and point out that (according to LNT model) the final death toll would be somewhat higher (at 27,000 total fatalities) than that mentioned above, due to these very small doses.

These doses, however, are well within the variation of background radiation, and similar or even much smaller than doses routinely received from medical imaging and such. As discussed earlier, there is little evidence that small doses have the linear health consequences that LNT suggests, and the major expert organizations on radiation and its health effects have concluded that LNT model should not be used for epidemiological purposes. For example, conclusive studies have found that no additional cancer cases have been caused by Chernobyl fallout in Finland (2 mSv lifetime dose).

Some groups have not been content with the relatively low mortality estimates of the World Health Organization and other agencies that comprised the Chernobyl Forum.[iv] They have proceeded to make their own, non-peer reviewed studies on the matter, resulting in tens, even hundreds of times more estimated fatalities.

European Greens were among those disappointed by the Chernobyl Forum’s results, so they commissioned and published their own TORCH-report[v] (The Other Report on Chernobyl). It again made good use of the LNT model and stuck to it on a purely theoretical level, whereas the Chernobyl Forum had searched for actual empirical evidence of harm to people’s health. TORCH managed to report 30,000 to 60,000 extra cancer deaths in the whole of Europe.

Next was Greenpeace[vi], who calculated that Chernobyl would eventually cause around 93,000 premature extra fatalities. The method was rather curious: any area that had any amount of fallout was included. If there were any increased fatalities in that area after 1986, these were counted as being due to Chernobyl. This dubious method meant that the increased fatalities that were due to liver cirrhosis in the area of the recently dissolved Soviet Union were promptly attributed to Chernobyl. The report did not question whether there could have been other reasons for liver cirrhosis than radiation from Chernobyl. Perhaps alarms should have gone off, as there are no studies showing that radiation causes liver cirrhosis.

Even this estimate, 10 times higher than that of the Chernobyl Forum, was not enough for everybody. Alexei V. Yablokov, one of the authors involved in the Greenpeace report, a former member of Russian Academy of Science and one of the founders of Greenpeace Russia, wrote a book Chernobyl: Consequences of the Catastrophe for People and the Environment (2007). It is based mainly on a wide variety of materials written in the Slavic languages. The book claims that around a million humans have died or will die due to the Chernobyl accident, growing the official estimates a hundred-fold and Greenpeace’s estimates ten-fold. Experts who have reviewed the book (and who know Russian language and can check some of the sources used) have noted that as a scientific study, the book has negative value. [vii] It uses fictional novels as sources, and scientific literature receives scant attention.

In addition to blaming liver cirrhosis and other diseases that have no known connection with radiation, the book resorts to fabrication and lying when scientific reality does not concur with the author’s preconceptions. For example, in the chapter dealing with Finland, a study concerning the area of Tampere concluded that birth defects had decreased after the Chernobyl accident. Yablokov, on the other hand, first generalized the study to cover the whole of Finland, and then promptly changed “decreased” to “increased”.

These kinds of problems have not stopped some anti-nuclear people from using Yablokov’s book as the definitive proof on the destructiveness of nuclear accidents.[viii]

Indeed, the common strategy for many anti-nuclear advocates seems to be ever-more imaginative and ridiculous claims that are poured on the unsuspecting public, as it is a well-known psychological fact that people often think, despite the actual evidence, that the truth is to be found somewhere in between the extreme claims made. This same tactic is used with Fukushima, as we will learn later in this book.

The disproportion between the actual evidence and the amount of public worry is enormous, especially if it is compared with common, everyday risks our society accepts to ensure everyday access to energy services. Coal is probably the most glaring of these. Coal mining accidents alone kill thousands every year, with tens of thousands getting sick and permanently disabled due to coal dust and other hazards. [ix] Air pollution kills roughly seven million each year, according to WHO.[x] Catastrophic climate change, which might end up being the biggest risk associated with coal burning, is not even included in these numbers.[xi] Greenpeace has done a study on the matter a few years back, as have other environmental NGOs more recently. These studies find that around 20,000 people are killed each year in Europe alone as a result of coal burning. In addition, coal burning distributes heavy metals and other toxins which have no half-lives to the environment.

The scale of this gap between reality and perception is so enormous that it makes it difficult for many to believe. Even if we take Greenpeace’s numbers at face value – for which there is no good reason – it could be said that a Chernobyl accident every few years would be an acceptable price for giving up coal burning from a public health perspective. Sadly, we would soon run out of Chernobyl-type reactors and would have to content ourselves with less harmful accidents.


[ii] ICRP. ICRP Publication 103: the 2007 recommendations of the International Commission on Radiological Protection. Ann ICRP. 2007;37(2-4):1–332.

[iii] UNSCEAR. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation Fifty-ninth Session (21-25 May 2012). New York, NY: UNSCEAR; 2012: Report No. A/67/46.

[iv] The report was done and published by IAEA, WHO, UNDP, FAO, UNEP, UN-OCHA, UNSCEAR, World Bank and the governments of Belarus, Ukraine and Russia. The original report can be downloaded from




[viii] Such as Helen Caldicott, who also claims to be strictly for science and evidence.


[x] 7 million premature deaths annually linked to air pollution, World Health Organization (2014).

[xi] European coal pollution causes 22,300 premature deaths a year, study shows, The Guardian (2013).

The Three Mile Island Nuclear Accident – What Really Happened

This image has an empty alt attribute; its file name is the-dark-horse-cover-new-jpg.jpg
The Dark Horse – Nuclear Power and Climate Change

This is a sample chapter from our recent book The Dark Horse – Nuclear Power and Climate Change (link to Amazon store). The book was published in 2020. It is our effort to counter the misinformation out there regarding the Three Mile Island accident.

Three Mile Island

Three Mile Island (TMI) ranks as the third most famous and serious civilian nuclear power plant accident. It happened 28th March in Harrisburg, Pennsylvania. Nobody died, and no significant amounts of harmful radioactivity were released into the surrounding areas. Reactor number two had a partial meltdown, and the cost of clean-up was around one billion US dollars. Public communication about the accident was a horrible failure. This caused panic, mistrust and the strengthening of the nascent anti-nuclear movement. Three Mile Island is commonly seen as one of the key reasons for the almost total shutdown of building new reactors anywhere in the western countries during the next 30 years.

The TMI pressurized reactors designed by Babcock & Wilcox had their quirks. The bigger problems were probably the lack of proper training and expertise of many nuclear operators in the fast-growing industry. People who had operated far smaller nuclear reactors in Navy submarines for a couple of years found well-paying jobs in the civilian nuclear industry. Those submarine reactors were sized in the ballpark of 12 MW, which made them much easier to handle than the civilian reactors that were dozens of times larger. For example, a full day after shutdown, a 1.2 gigawatt PWR still produces around 15 MW of residual heat.

The chain of events that led to the partial meltdown started around eleven hours before the accident.[i] Plant operators were trying to clean up some sophisticated water filters of the secondary water loop. The blockage was stuck, so instead of using pressurized air, the operators forced some water through to remove the resin. A small amount of the pressurized water got past a valve and ended up in the wrong place (instrument airline). Later this water caused the feedwater pumps to turn off, cutting off feedwater to the steam generators. This in turn caused increases in pressure and temperature in the reactor cooling system, which eventually led to an automatic emergency shutdown (SCRAM[ii]). As the turbines were offline, decay heat started gathering in the primary water loop.

Three auxiliary pumps were automatically activated, but they offered little help, since some valves were closed due to maintenance. This effectively cut off all primary and auxiliary cooling from the core. This closure of the valves was a violation of Nuclear Regulatory Commission (NRC) rules and was later found to be one of the key reasons for the partial meltdown.

As pressure in the primary system kept increasing, it automatically opened the pressure release valve. Normally this valve closes after pressure goes down, but due to a mechanical failure, it remained open. In addition to pressure, cooling fluid also started leaving the system. This mechanical failure of the valve was found to be one of the key factors that led to the accident. The stuck valve went unnoticed by the operators, mainly due to a badly designed status indicator light.[iii] The operator read the indicator as the valve being closed (as it should be), while in reality it was stuck open. This caused a lot of confusion amongst the operators, since other indicators were acting strange considering that the valve was supposed to be closed. Only the next work shift, seeing the situation with fresh eyes, realized what was happening. By then, it was much too late: 120,000 litres of coolant fluid had leaked from the cooling system, and the damage had been done.

The accident revealed severe shortcomings in communications between officials and the public. Responsibilities were found to be unclear. The public received a constant barrage of conflicting information, which increased panic and caused unnecessary evacuations.

The accident was a result of many unlikely technical problems occurring at the same time. Combined with somewhat lacking operator skills, the result was a partial core meltdown. Nobody got hurt and no significant radioactivity was released to the surroundings. What was released was mainly harmless Xenon-gas, although a small amount of radioactive iodine was also released.

[i] The article relies on this article in Wikipedia:

[ii] SCRAM comes from “safety control rod axe man”  and refers to the last line of safety in the first reactor humans built, whose job it was to cut the rope holding the control rods up with his axe.

[iii] Some sources say that the indicator was partly covered.

Fukushima Nuclear Accident – What Really Happened?

The Dark Horse – Nuclear Power and Climate Change

This is a sample chapter from our recent book The Dark Horse – Nuclear Power and Climate Change (link to Amazon store). The book was published in 2020, and this article came out on the 10th anniversary of the Fukushima accident. It is our effort to counter the misinformation out there regarding the Tōhoku earthquake and tsunami and its victims that have been all but forgotten, and the Fukushima nuclear accident that took most of the attention, even though it’s direct public health impacts have been rather small.


The most recent, and our second-worst nuclear accident is likely the one which currently affects our public nuclear discussion the most. A giant tsunami, which resulted from a record-breaking earthquake near the eastern Japanese coast, destroyed the back-up power sources of Fukushima Dai-ichi nuclear power stations. As a result, three reactors that were online at the time were badly damaged and released large amounts of radioactive matter to the surroundings. As is often the case with large-scale accidents, the reasons for the accident can be traced back to actions that were or were not taken long before the tsunami rolled over the insufficient sea walls and hit the plant.

It is hard to imagine a more challenging place to build nuclear power plants than the Pacific coast of Japan. The whole region is geologically unstable and is under a constant threat of earthquakes and tsunamis. But there are 127 million people living in the densely populated and wealthy Japan, and the country has an enormous appetite for energy. When this is combined with almost non-existent fossil energy reserves and the dense population (making renewable energy sources challenging as well), most of that energy has been imported. Japan is the world’s largest LNG (Liquefied Natural Gas) importer, second largest coal importer and third largest oil importer. Japan also remembers that during the Second World War, the allied forces cut most energy imports to the country with dire results.

If safety is given proper attention, it is not in itself that dangerous to build nuclear power plants even in geologically unstable areas such as Japan. The NRC (Nuclear Regulatory Commission of the U.S.) pointed out risks regarding earthquakes and tsunamis back in 1991.[i] The NRC study concluded that if a nuclear power plant lost its backup power during a massive power failure, the reactors could overheat.[ii]

The Fukushima Dai-Ichi nuclear power station had six reactors with a total capacity of 4.7 gigawatts. All of them used sea water for cooling and had no independent cooling towers. Since the accident, this type of “extra” cooling towers have been built on the Loviisa nuclear power plant in Finland, for example. Since there is little chance for tsunamis in the Baltic sea, this is mainly in preparation for a major oil accident. The first of the Fukushima reactors was brought online in 1971. The Mark I containment building it had was criticized as too weak in the 1970s, so the designer, General Electric, made some design improvements for them in the 1980s. Their operation required that the decay heat from shut down reactors could be removed with active back-up cooling systems using water-circulating pumps. In the U.S. the NRC required that back-up generators would be placed in earthquake and tsunami-proof locations at least one hundred meters away from other buildings. It also required extra mobile generators to be placed nearby.

IAEA (International Atomic Energy Agency) had recognized NRC’s recommendations as reasonable already in the early 1990s and recommended implementing them for its member states. But IAEA does not have power over national nuclear safety agencies.

The Japanese government had ensured everyone, including itself, that Japanese reactors were already completely safe. This led to the perverse situation in which the government would lose face if, despite claims of safety, additional safety improvements were implemented. The country had at least five different organizations that had their hand at least somewhat in civilian nuclear power, but before 2001, none of them had the power to mandate safety improvements to be made on nuclear power plants. This multitude of overlapping officials and agencies also caused inner struggles and paralyzed quick decision-making. To top it all, NISA (Nuclear and Industrial Safety Agency), which was the empowered agency in 2001, was not an independent actor as is the NRC. It was a subsidiary of the Japanese ministry of industry and commerce.

As the IAEA tsunami recommendation landed on their desk in the early 2000s, NISA had to compare it with another, cheaper recommendation seen as good enough by their parent organization. Perhaps unsurprisingly, the latter won on the basis that the nuclear safety commission had already reviewed how Japanese reactors would handle total power failure and the destruction of back-up generators. The study concluded that such an event was so unlikely that it was not worth the effort of preparation.

If Japan had followed the recommendations of the NRC 20 years earlier, the Fukushima accident would most likely have been avoided, or at least it would have been limited to a much smaller scale, similar to Three Mile Island. But even this negligence did not ensure that the accident would happen. The last straw was likely the order that evacuations from two-kilometre radius need be completed before any emergency pressure release could be done. This order was well-meaning, since pressure release like this always releases radioisotopes into the surroundings which would be higher than the limits normally allowed. But releasing the pressure could also prevent much larger damages and consequences.

Fukushima – What happened?

On March 11th in 2011, the seabed near the east coast of Japan shook like never before, during measured history at least.[iii] During the following three minutes, the east coast of Japan moved over two metres closer to California and sank almost a metre. Global daytime shortened by 1.8 microseconds and the rotational axis shifted by roughly 25 centimetres (10 inches).

All Japanese reactors did what they were supposed to do in such a situation: they shut down immediately. In Fukushima Dai-Ichi, the three operating reactors also went to a shut down and back-up generators started up, running the water pumps for cooling as planned. One of the operators of reactor 1 thought that its isolation condenser[iv] was working even too efficiently, as the temperature was dropping fast. He decided to bypass the automatic system and shut down this passive cooling mechanism. According to some sources[v], this was one of the key mistakes that later led to the accident.

The earthquake, which happened on the sea floor around 100 km to the east of Miyagi prefecture, had sent a massive tsunami on its way. Around one hour after the earthquake (15:35), the tsunami, which was in some places as high as 15 metres, hit the east coast of Japan. It flooded and flushed whole towns to the sea and entered deep inland. In just a few minutes, 21,377 people died or went missing in the rubble and the sea. More than 6,000 people were injured, and hundreds of thousands were left homeless. Some 250,000 buildings were destroyed wholly or partially, and a further 750,000 buildings were damaged.[vi]

Another nuclear power station in Fukushima prefecture, Fukushima Dai-ni, survived the tsunami with relatively small damages. In fact, it was used as shelter for local folks, because it is such a robust, safe structure. In Fukushima Dai-ichi, the destruction was much heavier. The tsunami ripped apart the diesel fuel tanks of the generators and flooded the turbine halls, which had the back-up generators running in their basements, producing the essential electricity to keep the cooling pumps and control rooms running. Only one of the generators, which was placed at a higher location and which was cooling reactors 5 and 6, survived intact. Both these reactors, along with number 4, were offline due to fuel loading.

Reactors 3 and 4 shifted from generators to battery power. Control rooms still had power, so the operator’s job was to make sure that all valves and electrical devices that had to do with cooling reactor 3 down were left in optimal position when the batteries would run out of power.

Reactors 1 and 2 had shared batteries, which had been flooded and had lost most of their charge. They were emptied in a few minutes, and total darkness took over the reactor building and the control rooms. There was no way to control emergency cooling any more, and it was impossible to know how much water was left in the reactor pressure vessel. When the accident occurred, there had been 4.5 metres of cooling water mixed with steam above the fuel assemblies. If the fuel assemblies were to surface above the water level so early after the shutdown, they would overheat and eventually melt.

Reactors 1, 2 and 3, which were running when the accident happened, were the most immediate threat. Of these, reactor 1 was the biggest worry, as its fuel had been in the reactor the longest, which meant that it would also produce the most decay heat. In addition, its isolation condenser had been manually switched off a few minutes earlier. Reactor 2 had its emergency cooling (RCIC) on, so that would help at least for some time. Back-up power to reactor 3 had been cut off, but it still had batteries feeding power to the most critical systems.[vii] TEPCO, the operator, notified the Japanese government that reactor 1 had an emergency.

The cooling water circulating in reactors 2 and 3 kept getting hotter, and at some point it would boil and turn to steam. All electrical connections between the reactors had been destroyed. All roads leading to the site had been flooded and were filled with debris, collapsed buildings and people running away, so it was hard to get to the site. Big enough generators were too heavy for helicopters. Electrical cables needed to be hooked up to the reactor buildings but moving cables 10 cm (4 inches) thick and weighing a ton amidst fallen buildings and rubble was not easy to do with manpower only.

Eventually, the operators working with flashlights managed to get some of the emergency cooling systems back online, at least partly. Fire trucks were driven beside the reactor buildings, and by hooking up their hoses to the emergency cooling system, the pressure increased, and more water was pumped to the reactor pressure vessels. But the pumps in the fire trucks were not strong enough to push much water into the over-pressurized vessels which were getting hotter. There would need to be a pressure release, which would also release radioactivity to the surroundings.

Reactor 1 was completely dark, so it was impossible to get any information on what was going on in the reactor. A few hours after the tsunami (8:49 PM), operators managed to get some electricity back to the control rooms of reactors 1 and 2. The indicators showed that the situation in reactor 1 was serious, and the operators notified the local authorities that evacuation plans must be started immediately as there might be need for emergency pressure release directly to the atmosphere. This was only done as a precaution, and preparations for the pressure release were not started.

A bit later, at 9:30 PM, the prime minister of Japan announced that the evacuation zone was to be expanded from two to three kilometres, which effectively doubled the number of people that needed to be evacuated. In hindsight, this was a serious mistake, as this new plan was not properly communicated to all local officials due to the general chaos.

Around midnight, the radiation levels in reactor 1 rose as a sign that the water level had fallen to the level of the fuel assemblies and preparations for the emergency pressure release were finally started. Releasing pressure without electricity was something that had not been practiced, so the preparations proceeded slowly.

What happened inside reactor 1 during this time? In three hours, the cooling water had boiled away. An hour and a half later the zirconium cladding of the fuel rods had become so hot that steam dissociated into hydrogen and oxygen. The fuel started to melt, and the pressure inside the reactor vessel increased rapidly. Without pressure release valves (which needed electricity), this pressure was hard to release. The containment vessel, made of inch-thick steel, ruptured and the hydrogen along with some radioactive fission products inside the reactor leaked into the reactor building. If passive hydrogen removal systems – a safety feature required in many countries – had been installed to the reactor building, this hydrogen would have been burned back into water, and nothing more serious would probably have happened. These systems were not a requirement in Japan, and had not been installed, so the reactor building started to turn into a bomb, just waiting for a spark.

The preparations for the pressure release continued through the night and morning, as did the evacuations which needed to be finished before permission for the pressure release would be granted. Damage inside the reactors kept getting worse, and around 5 AM radiation detectors noticed that radioactivity was leaking from the reactor buildings. Evacuation was still underway. Finally, around 9 AM, information was received that the evacuations had been finished. One of the operators went into the reactor building to manually open the pressure release valve. He only had time to open it partially when his dosimeter told him that the maximum allowed dose of 100 mSv had been received and he had to return. This limit was increased to 250 mSv a few days later, but then it was too late. At 10:40 AM pressure was finally released, but it was much too late.

At 15:36, with the pressure release still underway, reactor 1 ran out of time. A huge hydrogen explosion blew the top of the reactor building off, sending debris and pieces high into the air and around the compound. This debris broke the power connection, which had been established just a few minutes earlier, between the reactor buildings and the newly arrived high-voltage generators. The explosion also spread the radioactive fission products that had been gathering in the reactor building all over the area, slowing down any further repairs. Five emergency workers were injured. 

On the next day, 13th March, the emergency cooling of reactor 3 finally stopped. It had been operating on the steam produced by the decay heat from the reactor, but eventually the pressure had decreased too much. The preparations for emergency pressure release were started, but it was already too late. A couple hours later, the fuel started melting and the red-hot zirconium started splitting steam into hydrogen and oxygen. A fire truck arrived a few hours later and started to pump seawater into the reactor, and by some miracle, the pressure was lowered by releasing some steam and gases to the atmosphere, along with radioactive elements. But the designers of the pressure release systems had forgotten the possible hydrogen problem. A day later at 11:01 AM, there was an explosion in reactor 3 building.

Just an hour later, 70 hours after power was cut, the emergency cooling of reactor 2 overheated and the turbine which had been powering it stopped. The water boiled away, and in under four hours the fuel started melting and flowing to the bottom of the reactor vessel. Hydrogen started forming there as well, but someone had opened a panel on the wall to let the hydrogen and lighter radioactive elements out from the reactor building.

Reactor 4 had been in shut-down during the accident, so there was no immediate danger even though there was no power. But it shared a ventilation duct with reactor 3, and with no electricity available, the valves had been left open. Part of the hydrogen forming in reactor 3 found its way to the reactor 4 building and started gathering there, waiting for a spark. On 15th March, to everyone’s surprise, there was an explosion in reactor 4 building. The reason for it was confirmed only six months later, and so fear and rumours spread far and wide that the spent fuel that had been removed from the reactor had overheated and was the cause for the explosion.

All three of the operating reactors had melted down. Yet nobody died in this nuclear accident. Further studies by WHO and UNSCEAR have concluded that it is unlikely that anyone involved in the emergency work would die prematurely due to the radiation doses they received. Reactor 4 was basically still fixable, but it would be hard and expensive due to the radioactivity in the area. Reactors 5 and 6 did not suffer damages.

Significant amounts of radioactive elements were released to the surroundings during those few days. Mainly this consisted of iodine-131 and isotopes of cesium. Some radioactive isotopes also dissolved into the overflowing cooling water, and some of these ended up leaking into the Pacific Ocean. Small leaks have continued for a long time. None of these leaks will have significant health impacts or impacts on the environment.

If preparations for the emergency pressure release had been started right after operators realized that it might be needed (around 9 PM on 11th March), and if the pressure release had been started as soon as it was possible, resulting damages might have been much less. Hydrogen explosions could have been avoided, and the damages could have been limited to the reactors themselves being destroyed. Some radioactivity would have been released with the pressurized steam, but it would have been a small fraction of what was released.

Reasons for the accident have also been found in the actions of TEPCO (the operator) and nuclear safety officials before the accident. Many recommended safety improvements had been ignored, as had the possibility of an earthquake and tsunami of this magnitude. Proper preparations would likely have prevented the whole nuclear accident from happening. Onagawa nuclear power station, which was much closer to the centre of the earthquake, survived almost without any damages, and Fukushima Dai-ni, just 10 km away from Fukushima Dai-ichi, was also spared from serious problems.

Fukushima in the media

Rumours and conspiracy theories still abound that the true scale of the accident was hidden from the public by officials and the nuclear industry.[viii] Even a cursory glance at the news articles from that time proves the opposite. A nuclear accident in which nobody died got far more coverage than did the tsunami and its more than 20,000 victims. The global media, for the most part, forgot journalism and went after click-bait headlines, fearmongering and very poor fact-checking. One example of this is the news that started circulating about a year after the accident. We were told about the supposedly enormous amounts of radioactivity leaking into the Pacific Ocean from Fukushima. In fact, this was 300 tons of water that was slightly contaminated with radioactive tritium, totalling 20-40 terabecquerel (trillion becquerel).

Practically none of the articles brought that seemingly huge amount of radioactivity into context, and people were horrified. Had they done journalism instead of click-baiting, the readers would have learned that this “enormous release” was equivalent to 20-40 tritium-based self-illuminating EXIT-signs. The rumour mill kept on growing. Today, there are articles available that give straight citations saying 300 tons of water is leaking each day (instead of one year).[ix] The tritium in the water has also somehow turned into caesium and strontium along the way, which is a fundamental shift as tritium is not actually dangerous.[x]

Another news article that started circulating in spring of 2014 reported that the Fukushima accident was connected with thyroid cancers found in children.[xi] Signs of tumours were found after careful screenings of children in the area, which anti-nuclear activists saw as a sign that the accident caused a significant increase in thyroid cancer cases.

In truth, this was not at all what was found. Small tumours in thyroid glands are quite common, and most of them are not dangerous or aggressive and will go away on their own. Some estimate that perhaps a third of us has such a tumour in us any given day. This means that whenever a population is screened for signs of tumours, we will find plenty. The problem with the screening is when to count a shadow found in the scan as a tumour and when not. In the study in question, much smaller signs were counted as tumours than normally. With this method and criteria, any given population would show a significant increase in tumours.

In addition, it takes time for the tumours to grow and start showing up. If thyroid cancers were to increase due to the accident, they would not show up so soon anyway. The study was done merely to establish a baseline for further reference.[xii]  Experts have criticized the study in the medical journal The Lancet for using too small a control group, saying this method of counting smaller signs as tumour will lead to unnecessary treatments and anxiety for people, when harmless tumours that would likely go away on their own are removed surgically.[xiii]

Every mid-March we also get a steady stream of stories that tell us ”something is still ticking in Fukushima.” Many reporters have visited the Fukushima evacuation area with Geiger counters, and found that indeed, 0.4 microsieverts (or so) of radiation is present in some homes of elder people who would love to move back but are not allowed by the government. The context is usually missing. The said level of radiation (found in a story by Helsingin Sanomat, the biggest newspaper in Scandinavia[xiv]) is just a bit higher than is the normal background level in Finland. Someone living in Pispala gets a dose ten times larger.

If the nuclear radiation limits enforced by the Japanese government, which are based on international recommendations, were applied to Finland, most of the country would need to be evacuated immediately. This tells us something about the stringency of radiation limits we use around the world. It also tells us why cleaning up Fukushima is bound to cost tremendously and unnecessarily: they are cleaning the place to be less radioactive than most of Finland is naturally. While people are shocked about these costs, they silently accept the tremendous health costs that burning fossil fuels in Japan, due to the closures of their reactor fleet, will cause there.

Health impacts of Fukushima

The first peer-reviewed study on the Fukushima health effects was done by professor John Ten Hoeve and professor Mark Z. Jacobson from Stanford University.[xv] The study was based mainly on theoretical models, and it found that the radiation would cause around 130 extra cancer fatalities in the next 40 years, around the world. This amount is too small to be seen in health statistics. The study used the LNT model in the non-recommended way, which likely overestimates the amount of fatalities, since it assumes that even tiny doses of radiation will cause cancer at the population level. Mark Jacobson is commonly known to be very anti-nuclear, and he is also a rather shameless booster for 100% renewable energy systems. It is therefore slightly surprising to find the article stating that the evacuation likely caused more harm to health than the radiation would have, had the people stayed at home. 

The World Health Organization (WHO) did a more comprehensive hands-on study on the effects of Fukushima. It concluded that it might increase the statistical risk for cancer slightly, but the increase will be so small as to be impossible to detect. [xvi] The media again forgot journalism and went after the headlines. The headlines told us that the risk for small girls to get thyroid cancer went up by as much as 70 percent. Behind the outrage and shock caused by this sort of headline, nobody paid much attention to the meaning when placed in proper context. First, it only applied to a small group that got the largest amount of radiation. Second, in practice it meant that the lifetime risk of these girls getting thyroid cancer went from 0.75 percent to 1.25 percent (an increase of 70 percent, or 0.5 percentage points).[xvii]

The report by UNSCEAR came to similar conclusions. They estimate that 167 emergency workers received radiation doses that will slightly increase their lifetime risk of developing cancer. When we acknowledge that statistically 60 of them will get cancer for other reasons anyway, and the fact that their health will likely be closely monitored for the rest of their lives because of the Fukushima accident, it might be that their actual risk of dying of cancer has gone down. This is because the fact that any cancer is much more treatable if it is noticed at an early phase.

There is also a group of people that think conspiracy is the most logical explanation for the discrepancy between the expert statements and peer-reviewed studies and their own anti-nuclear preconceptions. The most common of these conspiracy theories goes roughly as follows: WHO and IAEA have signed a contract that forbids WHO from publishing anything that the IAEA does not want them to.[xviii] So whenever WHO publishes something that anti-nuclear advocates disagree with, they cry conspiracy. Is there such a contract? Of course not. The ”proof” of this conspiracy is a passage, taken completely out of context, which says:

“Whenever either organization proposes to initiate a programme or activity on a subject in which the other organization has or may have a substantial interest, the first party shall consult the other with a view to adjusting the matter by mutual agreement.”

As is often the method of conspiracy theorists, the whole contract, or the context, is ignored. Even a glance at the paragraph just above the one quoted would destroy the theory. It says basically that the IAEA has no power to order WHO to do or say (or leave out) anything that would hinder its mission.[xix] Indeed, such a clause as cited above is quite common between international organizations that have some overlapping interests and areas of expertise. Its main purpose is to ensure that one organization does not publish data or results it has obtained from another organization without making sure the data and results are accurate and up to date. WHO has also made a statement back in 2001, where it specifically addresses this worry and says it is unfounded. [xx]

But if there are such conspiracies of hiding real data and making up new results, why has nobody leaked these from the WHO? Publicity and fame would have been guaranteed. And why has all other peer-reviewed research on the matter – even that done by rather anti-nuclear researchers – achieved a similar result? Are they also in on the alleged WHO-IAEA conspiracy?

The initial estimates of the amount of radionuclides released from the accident varied greatly. Nobody knew if the spent fuel pools were intact (they were) and nobody knew the extent of meltdown and other damage sustained in each reactor, and how much radioactive material might be leaking.[xxi] The largest initial estimates by some were more than seven times larger, at 17,846 terabecquerels, PBq) than was the total amount present in reactors 1-3 (2,453 PBq), and only a part of this total amount was released.

TEPCO has since estimated that around 500 PBq of iodine-131, 10 PBq of caesium-137 and 10 PBq of caesium-134 were released to the atmosphere. Measured as “iodine-131 equivalent”, they totalled at 500 + 400 + 40 = 940 PBq. A total of 169 PBq of iodine-131 equivalent of radioactive elements leaked to the Pacific Ocean in addition to 500 PBq of the mostly harmless xenon-133. For comparison, Chernobyl leaked a total of 5,200 PBq of iodine-131 equivalent.

With all the outrage about the radioactivity leaking to the Pacific Ocean, the actual amount is good to put in context.[xxii]

 Sources of radioactivity in the oceans 
 Nuclear weapons testing in the 1950s and 1960s950 PBq
 Chernobyl100 PBq
 Fukushima total14–90 PBq
 Biggest natural sources of radioactivity in oceans 
 Uranium-23837,000 PBq
 Potassium-4015,000,000 PBq

It is a fact that the Fukushima accident has demanded and will keep demanding more victims. At least 1,600 have died directly and indirectly because of the evacuation. Some have committed suicide, some have died of drug abuse, and some elderly and sick have died because of the strain and complications involved in the evacuation itself. The damages due to anxiety, drugs and alcoholism and mental problems will keep growing for decades to come.

Fukushima is an enormous tragedy which should never have happened, but not for the reasons we often think. People living in the evacuation area lost their homes, and many did so permanently, for one reason or another. The local communities will likely never be the same, as even with reasonably low radiation levels, many people will be wondering if it is worth moving back, and if there is a community to which they can return. Will there be jobs, where will old friends and neighbours be, will the social network exist anymore, and how can it be built again?

From this perspective, the risks associated with nuclear are rather unique in comparison with most other energy sources. The risks and damages due to accidents hit whole communities. Even if coal kills hundreds, even thousands of times more people per unit of energy produced, coal is often a silent killer that can only be seen in statistics – although mining accidents can and do affect whole communities. Nuclear accidents and the evacuations they cause can destroy whole communities, even if the people will go on living somewhere else. Another similar community-breaking energy source is hydropower, which has literally wiped out whole towns and villages, and seen millions moved from their communities to make way for enormous hydro dam projects.

Both Fukushima and Chernobyl raise an important question that rarely gets asked and even less frequently answered. We know by now that the psychological health damages far exceed those caused by radiation from nuclear accidents. And we know that those damages are largely due to fear, social stigma and anxiety. These, in turn, are born of nuclear regulation that fails to acknowledge the larger public health while concentrating on minimizing the radiation exposure at any cost, and the anti-nuclear campaigning that often uses misinformation, fear and doubt as their tools for collecting donations to fund their activities. Can these campaigners somehow be held to account for the psychological damage they cause by their actions, at least morally and ethically if not legally? What about the responsibility of the nuclear industry regulators, and laws that both effectively prevent us from building nuclear (which is then replaced with other more harmful energy production) and fail to recognize the detrimental effects these laws and regulations can have on overall public health?

[i] See Corrice (2012). Fukushima: The First Five Days. The text here is largely based on this book, which is based on the original logs.

[ii] NUREG-1150, NRC (1991).

[iii] The book Atomic Accidents offers a thorough tour of the Fukushima accident. This chapter is based on that and on the wikipedia article on the accident.

[iv] Isolation condenser had been installed on the oldest reactor #1.

[v] Mahaffey, James (2014-02-04). Atomic Accidents: A History of Nuclear Meltdowns and Disasters: From the Ozark Mountains to Fukushima (Kindle Locations 7451-7452). Pegasus Books. Kindle Edition.

[vi] Numbers are from UNSCEAR 2013 Report Volume I: Report to the General Assembly, Scientific Annex A: Levels and effects of radiation exposure due to the nuclear accident after the 2011 great east-Japan earthquake and tsunami, page 25.

[vii] Numbers are from UNSCEAR 2013 Report Volume I: Report to the General Assembly, Scientific Annex A: Levels and effects of radiation exposure due to the nuclear accident after the 2011 east-Japan earthquake and tsunami, page 33.

[viii] There are even books on this, such as the one from a Greenpeace-activist, nutrition therapist Kimberly Roberson’s Silence Deafening, Fukushima Fallout … A Mother’s Response.

[ix] Fukushima leaking radioactive water for ‘2 years, 300 tons flowing into Pacific daily’, RT (2013).

[x] New Radioactive Water Leak Found at Fukushima Plant, Nation of Change (2014). Read 23rd March 2020.

[xi] Read 23rd March 2020.

[xii] Why the Cancer Cases in Fukushima Aren’t Likely Linked to the Nuclear Disaster, National Geographic (2014). Read 23rd March 2020.

[xiii] Shibuya, K., Gilmour, S., Oshima, A. (2014). Time to reconsider thyroid cancer screening in Fukushima. The Lancet 383(9932), 1883-1884.

[xiv] Fukushima tikittää yhä uhkaavasti, HS (2013). In Finnish.

[xv] Worldwide health effects of the Fukushima Daiichi nuclear accident, DOI: 10.1039/c2ee22019a

[xvi] World Health Organization weighs in on Fukushima, Nature News Blog (2012).

[xvii] Global report on Fukushima nuclear accident details health risks, WHO (2013).

[xviii] The contract can be read at Read 23rd March 2020.

[xix] See

[xx] Read 23rd March 2020.

[xxi] Read 23rd March 2020.

[xxii] Buesseler, Ken O. (2014). Fukushima and ocean radioactivity. Oceanography 27(1):92-105. Read here:

Kysymys kirjallisesta kysymyksestä koskien Olkiluodon poikkeustilan viestintää

Kansanedustajat Eveliina Heinäluoma (sd) ja Hussein al-Taee (sd) jättivät kirjallisen kysymyksen Olkiluodon ydinvoimalaitoksella liittyneen häiriötilanteen viestintään liittyen. Voit lukea sen tästä linkistä tai kokonaisuudessaan alta, blogauksen lopusta. Omassa työssäni mietin ydinvoima-alan viestintää ja ydinvoimasta käytävää julkista keskustelua jatkuvasti. Niinpä en malta olla purkamatta tätä kirjallista kysymystä hieman perusteellisemmin.


Osoitetaan ensin tekstiin eksynyt virhe, jossa Olkiluodon ydinvoimalaitos on ilmeisesti muuttanut Loviisan laitoksen tilalle, lähelle väkirikasta pääkaupunkiseutua. Olkiluoto on länsirannikolla Eurajoella, muutaman sadan kilometrin päässä Loviisasta ja pk-seudusta. Mutta virheitä sattuu (ja laajemmin ydinvoima-viestintään liittyen asia sinällään liittyy myös Loviisan ydinvoimalaitokseen).

Kirjallisessa kysymyksessä todetaan näin:
Oikea-aikaisen tiedotuksen tulee olla avainasemassa vastaavissa ydinvoimaloita koskevissa häiriötilanteissa, sillä hyvä tiedotus on merkittävä turvallisuustekijä. ”

Olen tästä täsmälleen samaa mieltä. Mutta mielestäni nimenomaan tämä on hyvä peruste sille, että EI toimita niin kuin kirjallisen kysymyksen esittäjät ja heidän siteeraamansa kyselyyn vastannut ihmisjoukko haluaa. Oikea-aikaista ja hyvää tiedotusta ei nimittäin ole se, että hätiköidään ja tiedotetaan mahdollisimman nopeasti jotain asiasta, josta ei vielä tiedetä kovin paljoa – varsinkin kun se vähä mitä tiedettiin oli se, että vakavaa äkillistä uhkaa (mikä olisi luonut tarpeen nopeammalle tiedotukselle) ei ole. Nopea ei ole sama asia kuin oikea-aikainen, eikä se ole sama asia kuin hyvä.

Jos kansalaisille olisi alettu lähettelemään heidän kyselyssä toivomiaan tekstiviestejä, että ”nyt on Olkiluodon ydinreaktorin höyrylinjassa havaittu säteilypiikki ja laitos hätäpysähtynyt – ei syytä paniikkiin”, olisi merkittävä osa ihmisistä todennäköisesti ymmärtänyt viestin väärin ja hätääntynyt. Hän olisi kysynyt itseltään ihan järkevän kysymyksen: ”Miksi kaikille lähetettäisiin tällainen viesti, jos kyseessä EI ole oikeasti vakava hätätilanne?

Miksi tosiaan olisi? Ihan vain varmuuden vuoksi, että osaavat varautua? Mutta varautua mihin? Tilanteeseen, jonka ei pitänyt olla vakava? Kuka tässä tilanteessa uskoisi, että tilanne ei ole vakava, jos siitä on kuitenkin juuri lähetetty miljoona tekstiviestiä ja josta termejä heikosti ymmärtävä lehdistö jo uutisoi kohuotsikoin (koska siitä on lähetetty miljoona tekstiviestiä)? Totta kai ihmiset hätääntyisi.

Paniikki ei synny siitä, että olisi hätätilanne. Paniikki syntyy siitä, että ihminen näkee toisen ihmisen hätääntyvän ja alkaa ajatella, että hänenkin on syytä hätääntyä. Olemme laumaeläimiä, jotka uhraavat faktat ja rauhallisen tilannekuvan heti kun joku laumastamme antaa siihen jonkinlaisen syyn. Ja paniikissa syntyy herkästi rumaa jälkeä. Kun ihmiset lähtevät joukolla tunnekuohussa ajelemaan, voi joku oikeasti loukkaantua! Ja vaikka jossain maaseudulla on vielä ihmisillä tilaa hätääntyä ja ajella, niin ajatellaan tilanne pk-seudulle kuten kysymyksen allekirjoittajat, jossa ihmisiä on tiiviissä. Hätäännys ja paniikki leviävät sitä nopeammin mitä tiiviimmässä ihmisiä on, sillä sitä herkemmin vaikuttaa siltä että ”jotain on tekeillä”. Tällaisessa tapauksessa peräänkuulutetulla ”nopealla viestinnällä” olisi voinut saada todella paljon ihan oikeaa vahinkoa aikaiseksi.

Onkin äärimmäisen vastuutonta ruveta pelottelemaan ihmisiä viesteillä, joissa väärinymmärtämisen ja hätääntymisen riski on niin ilmeinen kuin se ydinvoiman kanssa on. Ydinvoiman ja säteilyn pelko on jo nyt paljon itse säteilyä suurempi riski, kuten Fukushimasta opimme: säteilypelon aiheuttama hätäily ja panikointi, eli juuri sellainen toiminta, jota kirjallisen kysymyksen esittäjät ilmeisesti peräänkuuluttavat, oli vastuussa tarpeettomista evakuoinneista, joissa kuoli toista tuhatta ihmistä. Onnettomuudesta vapautunut säteily, vaikka kaikki olisivat jääneet niille sijoilleen, ei todennäköisesti olisi aiheuttanut tilastollisesti merkittäviä terveysvaikutuksia. Olisipa sielläkin paikallinen viranomainen viestinyt vähän harkitummin.

Ydinvoiman turvallisuuteen liittyvää viestintää ei saa ohjata ihmisten halu saada juoruja tai vaillinaista tietoa mahdollisimman nopeasti. Se on keltaisen lehdistön ja klikkijournalismin alaa. Sitä tulee ohjata kansanterveyden turvaaminen kokonaisvaltaisesti. Tiedottamisen tulee tapahtua nimenomaan oikea-aikaisesti ja sen tulee olla hyvää, kuten kirjallisen kysymyksen esittäjät vaativat. Mutta se ei tarkoita sitä mitä he tuntuvat ehdottavan: hätiköityä, nopeaa ja ihmisten turvallisuuden kannalta turhaa (ja sen vaarantavaa) viestittelyä. Päinvastoin.

Tarvitaan kyllä parempaa viestimistä mihin ala ja viranomaiset Olkiluodon tapauksessa venyivät, sillä monet aikaiset annetut lausunnot olivat teknisiä ja tavalliselle ihmiselle vaikeasti ymmärrettäviä. Tarvitaan rauhallista, selkeää ja asiat kontekstiin laittavaa viestintää, vaikka sen valmistelu sitten hieman kauemmin veisikin.


Kirjallinen kysymys Olkiluodon ydinvoimalan häiriötilanteen viestinnästä

Eveliina Heinäluoma sd ym.

Eduskunnan puhemiehelle

Olkiluodon ydinvoimalassa tapahtui 10.12.2020 häiriötilanne puolen päivän aikaan. Olkiluodon voimalaitos pysähtyi höyrylinjassa ilmenneen säteilypiikin vuoksi. Reaktori ajettiin alas seisokkiin sen jälkeen, kun laitoksessa havaittiin radioaktiivisen säteilyn voimistumista hetkellisesti.  

Turvallisuusjärjestelmät toimivat häiriötilanteen yhteydessä suunnitellusti, mutta keskustelua mediassa herätti viestinnän hitaus häiriötilanteen tultua ilmi. Laitoksen turvajärjestelmä kytkeytyi päälle iltapäivällä klo 12.22. Ensimmäinen tiedote tapahtumasta lähti medialle klo 13.28 eli noin puoli tuntia sen jälkeen, kun Säteilyturvakeskus oli saanut häiriöstä tiedon. Sosiaali- ja terveysministeriön tiedotustilaisuus asiasta pidettiin klo 15.30. 

Suomen pelastusalan keskusjärjestö (Spek) ja STUK teettivät tapahtuman jälkeen lähialueen asukkaille kyselyn ydinvoimalan häiriötilanneviestinnästä. Verkkokyselyyn vastasi 3 500 ihmistä ympäri Suomen, ja heistä viidesosa oli lähialueen asukkaita.  

Kaikista kyselyyn vastanneista viestinnän oli arvioinut huonoksi reilu kolmannes. Ihmiset olisivat halunneet lisää tietoa mm. häiriötilanteen syistä ja seurauksista sekä siitä, mitä kansalaisten tulisi tehdä säteilyonnettomuudessa. Viranomaisen toimista olisi haluttu kuulla myös enemmän. 

Vaaratiedotteelle ei ollut aihetta, mutta kansalaiset kokivat, että heidän olisi tullut saada tietoa asiasta nopeammin ja kattavammin, esimerkiksi tekstiviestillä. Yli puolet sai ensimmäisen tiedon tapahtuneesta median välityksellä.  

Oikea-aikaisen tiedotuksen tulee olla avainasemassa vastaavissa ydinvoimaloita koskevissa häiriötilanteissa, sillä hyvä tiedotus on merkittävä turvallisuustekijä. Olkiluodon tapauksessa ydinvoimalan välittömässä läheisyydessä sijaitsi Loviisa, mutta kovin kaukana ei ole myöskään väkirikas pääkaupunkiseutu. Tiedeyhteisö on pitänyt ydinvoimaa mahdollisena osana ilmastonmuutonmuutoksen torjunnan talkoissa. Jotta tämänkin ratkaisun hyväksyttävyys osana ilmastotyötä otettaisiin positiivisesti vastaan, on viestintään panostettava ja virheistä opittava.  


Edellä olevan perusteella ja eduskunnan työjärjestyksen 27 §:ään viitaten esitämme asianomaisen ministerin vastattavaksi seuraavan kysymyksen:

Mihin toimiin hallitus aikoo ryhtyä, jotta nyt esiintyneet epäkohdat ydinvoimalan häiriötilanteiden viestinnässä korjataan ja nopea tiedonvälitys alueen asukkaille varmistetaan?

Olkiluoto 2:n käyttöhäiriön uutisointi

Olen blogissani kerännyt median erilaisia ydinvoimauutisointiin liittyneitä omituisuuksia ja ylilyöntejä. Joulukuinen Olkiluoto 2 reaktorin käyttöhäiriö ja pikasulku kirvoitti uutisointiakin aiheen tiimoilta. Ohessa erään aiheesta julkaistun krijoituksen analyysi. Huom, tämä ei ole artikkeli itse tapahtumasta, vaan tapahtuman käsittelystä ja uutisoinnista.

Ydinvoima ja Journalismi

Kun ydinvoimalassa tapahtuu jotain poikkeuksellista, kiinnostuu media aiheesta välittömästi. Kaikessa kiireessä lentää monelta lehtimieheltä journalismin perusopit hetkeksi peränurkkaan. Journalismin perusopeilla tarkoitan sitä, että raportoidaan asioiden faktat mahdollisimman huolella ja neutraalisti, kontekstia mukaan tuoden, ilman isompaa värittelyä ja mässäilyä.

Kerrataan ensin, mitä tiedämme tapahtuneesta. Lyhyesti VTT:n Jaakko Leppästä mukaillen:

Reaktorin suljetussa järjestelmässä kiertävää jäähdytysvettä suodatetaan siihen vapautuvista radioaktiivista aineista, jotta esimerkiksi vuosihuollot ovat helpompia toteuttaa. Suodattimia varten tätä vettä jäähdytetään. Nyt jäähdytys oli vikaantunut, joten suodattimiin virtasi normaalia kuumempaa vettä. Tämä vapautti niihin keräytyneitä radioaktiivisia aineita takaisin suljettuun vesikiertoon. Vesikierron radioaktiivisuutta valvotaan jatkuvasti, joten tämä jäähdytysveden noussut radioaktiivisuus laukaisi reaktorin pikasulun.

Journalismi lähtee laukalle

Ohessa Tapani Postilan kirjoittama lyhyt juttu Olkiluodon kakkosreaktorissa sattuneesta käyttöhäiriöstä 10. Joulukuuta 2020. Käyn sitä hieman läpi niin teknisestä kuin journalistisesta näkökulmasta. Lainaukset ovat hänen tekstiään, välissä omat kommenttini.

Ydinvoimaturman uhka sähköisti torstaina. Eurajoella Olkiluodon ydinvoimalaitoksen kakkosyksikössä tapahtui vakava häiriötilanne, joka johti pikasulkuun. Järjestelmät mittasivat kohonneita säteilytasoja laitoksen sisällä. Laitos ajettiin alas ja eristettiin. Suomalaisittain kyseessä oli poikkeuksellisen vakava tilanne. Yhtä voimakasta suojaustoimintoa ei ole laitoksella koskaan ennen tapahtunut.

Olkiluodossa ei ollut ydinvoimaturman uhkaa, ja vakava häiriötilannekin on terminä melko voimakas. VTT:n Jaakko Leppäsen mukaan kyseessä oli ”käyttöhäiriö”. Näiden välillä on melkoinen ero annetussa mielikuvassa. On syytä kysyä, millä perusteella toimittaja kutsuu tapahtunutta ydinvoimaturman uhaksi? Silläkö, että turvatoimet toimivat kuten pitikin, ja viranomaiset käynnistivät protokollan mukaiset toimenpiteet?

Pikasulku puolestaan on varsin normaali käyttöhäiriön aiheuttama toimenpide, joka osaltaan estää sen, että mitään ydinvoimaturman uhkaa ei pääse edes syntymään. Automaattiseen pikasulkuun voi johtaa monet asiat.

Kuten toimittaja kirjoittaa, laitoksen sisällä mitattiin kohonneita säteilytasoja. Tämä olisi kuitenkin hyvä sekä pistää kontekstiin että tarkentaa, sillä tuolla tavalla sanottuna mielikuva on jälleen uhkaava ja vaaralla mässäilevä. ”Laitoksen sisällä” tarkoittaa tässä tapauksessa suljettua jäähdytysvesijärjestelmää laitoksessa, jossa ihmiset eivät käytön aikana oleskele. Myös reaktoriastian sisällä on erittäin korkea säteilytaso, joka tappaisi (kuumuuden ohella) sinne jotenkin pääsevän ihmisen hetkessä. Myös vaikkapa juhannuskokon keskellä (lämpö)säteilyn taso on niin korkea, että se tappaa ihmisen hetkessä. Siksi sinnekin menemistä pyritään välttämään.

Säteilyturvakeskuksen pääjohtaja Petteri Tiippana totesi tilanteesta, että jonkin verran aktiivisuutta oli ilmastointipiipun kautta päässyt, mutta määrä vastasi suurin piirtein sitä määrää, mikä laitoksen normaalikäytönkin aikana pääsee. Tiippana painotti, että asukkaat voivat olla turvallisin mielin tilanteesta huolimatta.

STUKin pääjohtaja Petteri Tiippana totesi hyvin pitkälle juuri näin. Ympäristöön ei päässyt normaalia suurempia säteilyannoksia (jotka ylipäätään ovat siis niin pieniä, että banaania hieman keskivertoa enemmän sisältävällä ruokavaliolla tai sopivalla hiekkaharjulla asumalla päästään korkeampiin annoksiin.)

Olkiluodon ydinvoimalan muuttuminen hetkeksi Olkivuodoksi on vakava muistutus vaaroista, joita sisältyy sähkön tuottamiseen ydinvoimalla. Suomessa ydinvoimaloiden ongelmat ovat olleet vuosikymmenten aikana pieniä, ja ne eivät ole aiheuttaneet ympäristölle vaaraa. Kaikki kuitenkin tietävät maailmalla tapahtuneista ydinonnettomuuksista.

Tässä yllämainittu normaalia vastaava säteily muutetaan nopealla silmänkääntötempulla ”Olkivuodoksi”, joka vielä samassa lauseessa muuttuu vakavaksi muistutukseksi ydinvoiman käytön vaaroista. Siis se, että mitään merkittävää vaaratilannetta ei tapahtunut, ja se että järjestelmät ja viranomaiset toimivat niin kuin niiden pitikin, onkin yhtäkkiä vakava muistutus ydinvoiman vaaroista?

Lisäksi, tietävätkö kaikki tosiaan maailmalla tapahtuneista ydinonnettomuuksista ja niiden seurauksista paljoakaan? Tšernobyl on onnettomuuksista ainoa, joka on aiheuttanut suoria uhreja, vajaa kuutisenkymmentä lähinnä pelastustöihin osallistunutta. Jos epäsuoria uhreja tulevina vuosikymmeninä tulee, ne hukkuvat taustakohinaan. Esimerkiksi Suomessa Tšernobyl ei näy syöpätilastoissa. Ikävää, mutta melkein mihin tahansa teolliseen toimintaan verrattuna varsin maltillista. Kivihiilen normaalin polton seurauksena menehtyy ennenaikaisesti ihmisiä enemmän joka ikinen päivä. Tarkemman kuvauksen Tšernobylin onnettomuuden kulusta, seurauksista ja käsittelystä mediassa voit lukea Musta Hevonen -kirjastamme poimitusta blogiartikkelistani. Mutta palataan takaisin aiheeseen.

Suomalaista ydinvoima-osaamista ja turvallisuuden varmistamista ydinvoimaloissa pidetään huippuluokkaisena. Olkiluodossa koettiin kuitenkin torstaina jotain, joka yllätti ammattilaisetkin. Onni tilanteessa oli, että vakava häiriö ei johtanut vakavaan onnettomuuteen.

Käyttöhäiriö ja pikasulku toki yllättää ammattilaisetkin, koska ne ovat niin harvinaisia tapahtumia. Mutta sitten toimittajan mopo lähtee keulimaan, sillä hän antaa ymmärtää, että kyseinen käyttöhäiriö olisi voinut johtaa vakavaan onnettomuuteen, ja että nyt kävi jotenkin onni myöden, että näin ei tapahtunut. Liian lämpimän veden pääsy suljetun jäähdytysvesikierron suodattimiin (jota siis kuvataan nyt vakavana häiriönä) siten, että niistä vapautuu niihin kerääntyneitä aktivoituneita aineita takaisin vesikiertoon ei johda vakavaan onnettomuuteen, ei vaikka kävisi miten huono onni. Se johtaa reaktorin pikasulkuun, jos aktiivisuustaso nousee riittävän korkealle.

Paljon jäi myös petrattavaa. Ydinvoimalan häiriötilanteesta tiedotettiin yleisölle ensimmäisen kerran vasta tunnin kuluttua tapahtuneesta. Tunti on aivan liian pitkä viive vaarasta kertomiselle, kun käsillä voi olla tuhoisan onnettomuuden ainekset.

Viestintä olisi voinut tosiaan toimia paremmin. Nyt esimerkiksi journalistit ehtivät rakentaa mielessään jos jonkinlaista kauhuskenaariota, ennen kuin selkeää ja luotettavaa tietoa oli saatavilla. Ydinvoimayhtiöt eivät myöskään ole vielä löytäneet keinoa kommunikoida alan sisäisiä termejä ja käytäntöjä alan ulkopuolisille ymmärrettävästi ja konteksti mukaan tuoden. Insinöörivetoisella ja tarkoin säädellyllä alalla mennään usein ajatuksella, että riittää kunhan faktat on mahdollisimman tarkkaan kuvattu, siitä viis mitä kuulija niistä ymmärtää tai millaisen käsityksen niistä saa. Tämä on kuitenkin nimenomaan se aspekti, joka viestinnässä tulee olla keskeinen päämäärä: ihmisille pitää antaa ymmärrettävä kuva asiasta heidän lähtökohtansa huomioiden. Ei riitä, että viestijä itse ja hänen kollegansa ymmärtävät käytetyt termit. Vastuullinen viestintä ottaa huomioon myös viestin vastaanottajan.

Toimittajan mopo kuitenkin keulii myös hänen omasta aloitteestaan. Tunti voi olla pitkä aika vaarasta kertomiselle, jos käsillä voisi olla tuhoisan onnettomuuden ainekset (tosin ydinonnettomuudet ovat luonteeltaan varsin hitaasti eteneviä, ja turha hötkyily ja pelon luominen johtaa ihmisissä hätäilyyn ja ylilyönteihin, jotka ovat seurauksiltaan paljon vaarallisempia).

Mutta käsillä ei ollut tuhoisan onnettomuuden ainekset. Se, että asian tarkkaa syytä ei heti tiedetty, ei tarkoita sitä, että se voi olla mitä vain. Kyseessä oli laitoksen käyttöhäiriö, joka johti pikasulun laukeamiseen. Protokollaan kuuluu, että valmiussuunnitelmat laukeavat samalla.

Ydinalalla turvallisuuden varmistaminen on aivan eri tavalla ennakoivaa ja monella tasolla toimivaa kuin ihmisten normaalissa elämässä. Vertaus voi vähän ontua, mutta jos ydinreaktoria vertaisi henkilöautoon, se ei suostuisi edes käynnistymään, jos vasemman takavalon polttimo olisi rikki. Päinvastoin, paikalle kutsuttaisiin autonkorjaajat, kolme katsastusmiestä ja poliisipartio varmistamaan takavalon toimivuus ennen uutta käynnistysyritystä.

Ydinvoiman merkitys sähköntuotannossa on edelleen vahva, kun fossiilisista polttoaineista luopuminen lisää valtavasti energian tarvetta. Kasvava sähkönkulutus täytyy tyydyttää. Ydinvoima on yksi keinoista saada sähköä energiaa janoavalle maalle. Pyhäjoella rakentamislupaa odottavan Hanhikivi 1 ydinvoimalaitoksen odotetaan mahdollisen valmistumisen jälkeen tuottavan kymmenyksen Suomen tarvitsemasta sähköstä.

Ydinvoiman tuotantoon liittyviä riskejä ei ole vara aliarvioida. Ydinvoimalaitoksen vakavan häiriön syyt on tutkittava todella tarkkaan. Suomi ei ole mikään lintukoto myöskään riskialttiissa ydinvoiman tuottamisessa.

Ydinvoiman tuotantoon liittyviä riskejä ei todellakaan ole aliarvioitu. Itse asiassa ne järjestelmällisesti yliarvioidaan ja jätetään laittamatta kontekstiin. Se, että ydinvoiman riskejä ei ole yhteiskunnassa laitettu kontekstiin johtuu esimerkiksi siitä, että mitään kansanterveydellistä kokonaisanalyysiä tai vertailua ei ydinvoiman turvallisuuden kanssa nykyisin tehdä. Ydinvoimaa ja ydinvoiman turvallisuutta ei siis verrata muun energiatuotannon turvallisuuteen tai terveysvaikutuksiin, vaan sitä arvioidaan ikään kuin omassa siilossaan. STUK keskittyy, mandaattinsa ja osaamisensa mukaisesti, säteilyturvallisuuteen ja säteilyannosten minimointiin yhteiskunnassa, ei kansanterveyden maksimointiin. Nämä eivät ole lähimainkaan samat asiat.

Tämä olisi journalismin näkökulmasta hyvä muistaa, kun kirjoittaa johonkin ”riskialtis ydinvoima.” Se kun on samalla kuitenkin vähemmän riskialtis meille kuin juuri mikään muu luotettava energiantuotantotapa.

The Dark Horse galloping into Estonia

Just a few days after coming out, ”The Dark Horse – Nuclear Power and Climate Change” is now on its way to be translated for the Estonian market, according to preliminary negotiations. Publication is aimed for early 2021.

Cover of The Dark Horse – Nuclear Power and Climate Change

Estonia is among the more progressive European countries when it comes to seeing nuclear as an exciting opportunity to both decarbonize their own energy supply and to help their neighbors do the same. It is therefore essential to have easily accessible and factual information available for the public as well as the many stakeholders and policymakers.

The Dark Horse is a great way of providing this information. It is a carefully cited thorough discussion of the climate situation as well as the role that nuclear has played and could play in the future. It points out the popular myths around nuclear energy and offers mainstream studies and hard evidence in their place – and it manages to do this in an entertaining and easily readable way.

The Dark Horse – Nuclear Power and Climate Change

Our new book The Dark Horse – Nuclear Power and Climate Change is out!

Get the Kindle ebook from this link or by clicking the image below! Paperback version will be out in June 2020.

From the back cover:

Climate scientists consider climate change to be among top threats to humanity’s future. If unchecked, runaway climate change can destroy not just many of our current ecosystems, but wreak havoc in human societies as well. To prevent the worst catastrophe, greenhouse gas emissions from our energy system needs to decline to zero rapidly. We need to replace fossil fuels, which represent roughly 85 % of our energy production, with low-carbon alternatives. To manage this in a low-risk and timely manner, all tools need to be utilized to their maximum potential, including nuclear energy.

Nuclear is surrounded by colourful rhetoric, politics, fear and fearmongering, click-bait scandal-headlines and mental images of dangerous radiation and catastrophic accidents. But how much of this is warranted, and how much is based on beliefs, opinions and prejudices? How dangerous is ionizing radiation really? What happened in Chernobyl and Fukushima, and what are the best estimates on their effects on public health and the environment? And can we harness nuclear energy to play a major role in decarbonizing our energy systems rapidly and more affordably?

This book takes a serious look how the climate change mitigation is progressing, what needs to be done, and how nuclear has helped in the past, and can help us in the future. Partanen is an award-winning science writer and analyst on climate, environment, energy and society. Korhonen did his PhD in the history of technology, has written about climate and energy for years and is currently researching “Plan B”, and emergency program for climate change mitigation.

Essential reading for all climate hawks, policymakers and environmentalists.” – Kirsty Gogan, Founder, Energy for Humanity

Why Germans won’t heat their homes even with free electricity?

This is a translation/guest post by Riku Merikoski. The original can be found here (in Finnish). All mistakes due to translation are my fault. 

On Monday 10th February 2020 something historical happened. For the first time, the market price of electricity fell below zero in Finland. While -0.2 € per megawatt hour (or -0.02 cents / kWh) is not dramatically different from earlier lows of 0.1 €/MWh, going negative is a strong symptom of the sickness that ails our electricity markets. Governments have created a situation where it is not worthwhile to use low carbon electricity even if it is free from time to time.

There are several reasons for the negative prices, but the main driver is the reckless support-policy for renewable electricity in Germany and Denmark.

In 2017 the total subsidies paid for renewable electricity in Germany were around 26 billion euros, of which 8.5 billion was paid to wind producers. Most of the wind production in Germany gets high feed-in-tariffs regardless of the market price of electricity. Only turbines built in 2016 or later take even a small hit to their revenues if prices go below zero, and more than 75 % of the production capacity was built before that.

As a result, Germany and Denmark have experienced negative prices already for years, and this time they remained negative for six hours. Strong imports from Denmark and Germany during the night were among the main causes for pushing Finnish prices below zero.

Germany had around 104 TWh of wind production in 2017. Divided to that amount, the 8.5 billion euros in tariffs means a tariff of around 82 €/MWh. Just a few years ago, new wind projects got a higher tariff of around 80 €/MWh for the first five years, and a lowered tariff for the next 15 years, which is most of their practical operational lifetime. Offshore wind had even higher tariffs, which increases the average wind tariff further. You can find out more about these numbers from the Bundesnetzagentur statistics.

Average onshore tariff is around 66 €/MWh and offshore tariff average is 159 €/MWh. There has not been much new onshore wind coming online during the last two years and just 2,000 MW of offshore wind, so the averages have not changed that much since 2017. The production for this day (10th February) was estimated to be around 40,000 MWh/h on average, meaning that almost 1,000,000 MWh of wind electricity was produced during the 24 hours. This means that roughly 80 million euros of wind tariffs were paid. On top of this, solar PV and bioenergy also got paid some tariffs, but during a windy winter day those are usually smaller amounts.

So is 80 million euros a lot or not? It’s a lot. The average market price for electricity in Germany was 8 €/MWh and total demand was around 1,500,000 MWh (1.5 TWh). During daytime electricity demand is higher and so is the market price, so the total market price for the 24 hours is roughly 15 million euros. The value of the wind production of around 1,000,000 MWh was roughly 8 million euros. The sources for all these numbers are from EEX and Entso-E.

Let’s take a moment to contemplate the numbers once more:

German electricity consumers paid 80 million euros in tariffs to get 8 million euros worth of wind power to the market. The total value of all electricity consumed in that day was 15 million €.

Broken Market

It is abundantly clear that this kind of subsidies will break the electricity markets. There is simply no point to make any market-driven investments in Germany; the tariffs are simply too large compared to the market value of electricity. While this single day was a very windy one, even the annual situation is bleak, as the tariffs paid for renewable electricity are of similar cost as is the total market value of all electricity consumed in Germany in that day. The Danish have a similar situation, but of course in a much smaller scale. Due to many interconnections between countries, what happens in Germany affects pretty much all of Europe to a degree.

What is the problem, isn’t free electricity great?

The first problem with “free” electricity is that nobody will invest in such a heavily subsidised market. The politicians have chosen the “winners” and everything else is a loser. Indeed, it is likely that without further subsidies in Finland, Sweden and Norway, there might have been not much investments in domestic wind capacity because the market was already getting saturated by Germany and Denmark and there were no signals coming from the markets. This might not be a problem if “getting more renewables” is the end-goal one prefers, but I think the goal should be decreasing emissions.

And here lies the second problem. The electricity taxation system we have is incompatible with this new normal where we have even negative prices from time to time. We tax the use of electricity the same way no matter what the price or CO2-emissions content of electricity is. The tax stays the same when electricity price is -10 €/MWh and its low carbon and when the price is 100 €/MWh and its high carbon.

This makes no sense, and the German system is the climax of this kind of dysfunctional policy. Why? Because the feed-in-tariffs for renewable energy in Germany are funded with additional taxes and fees collected from households and other smaller consumers from the electricity they consume. This leads to a situation where electricity costs 300 €/MWh (30 c/kWh) for these consumers on average. Image 1 below shows how this price is formed. A bit over fifth of the total cost is the cost of the energy (Strombeschaffung). About a quarter is transfer fees (Netzentgelte), and more than half is different taxes. Only the value-added tax (Mehrwertsteuer) is in any way relative to the price of electricity. The largest tax/fee is the EEG (EEG-Umlage) that is used to pay for the tariffs of renewable electricity, and then there is the electricity-tax (Stromsteuer) and a variety of other sorts of additional fees.


Image 1. The cost components of German household electricity. Source: Fraunhofer ISE, Recent facts about photovoltaics in Germany

We can also calculate the cost of electricity use for a German household when the price of electricity in the market is 0 €/MWh. After the other taxes and fees, the total cost is around 200 €/MWh (20 c/kWh). So even “free” electricity is almost as costly in Germany as the total average cost of electricity for households is in Europe, which is around 216 €/MWh (1st half of 2019).

Decarbonization of energy is done through electrification

It is a well-known fact that we need to electrify our use of energy, or in other words, replace burning of fuels with clean electricity, if we are to decarbonize our energy systems. And here lies the final problem. Germany taxes natural gas very lightly. Natural gas costs a household in Berlin about 62 €/MWh (6.2 c/kWh), as Household Energy Price Index tells us. This deserves another deep contemplation:

Even if a German household had a heat-pump installed with a COP of 3 (meaning one kWh of electricity is used to create 3 kWh of heat), and even if the market cost of electricity was free, the German household would be economically better off burning natural gas for heating.

And this dynamic can clearly be seen from image 2 below on how German houses are heated. Half of households are heated with natural gas and a quarter with fuel oil (Heizöl). Around 14 % are heated with district heating (Fernwärme), while electricity and heat pumps have a share of less than 5 %. And this is not due to old houses being heated with oil and gas. In 2019, the most popular heating method in new houses was still natural gas, and its popularity is still growing.


Image 2. Heating sources of German houses. Source: BDEW.

It is now the year 2020, and Germany has not even started to decarbonize their building heating. What is worse, as we learned above, the German tax-policy not only does not support this decarbonization of heating, but actively discourages it. Even “free” electricity is much too expensive for Germans to use for space heating because how electricity is taxed. If Germany wants to decarbonize its heating sector, this needs to change.

A first step would be to fix electricity taxation so that “free” electricity would be much lower cost for households than it is today, as when this happens, there is usually an oversupply of wind or solar and the electricity grid is somewhat clean (although Germany’s coal-plants often keep operating as it is too expensive to ramp them down just for a couple hours). This would also create additional demand for those low-cost periods which would increase the prices a bit and fix the broken market a little bit.

So far, there is no indications that anything would be done to fix this situation. It is my prognosis that Germany will fail to decarbonize its heating sector, which will likely mean that it will also miss its wider emissions reductions goals.

Author: Riku Merikoski

Translation: Rauli Partanen

Päästövähennykset Helsingin Sanomissa

Helsingin Sanomien suuressa päästöjutussa 3. Helmikuuta 2020 oli muutamia ongelmallisia olettamia.

Päästövähennystarve, mikäli Suomi haluaa olla hiilineutraali, on karkeasti 35 miljoonaa tonnia vuoteen 2035 mennessä – riippuen siitä, miten paljon metsiin ja maaperään sekä puutuotteisiin tuolloin sitoutuu hiiltä. Tavoite on kunnianhimoinen, ja nyt mietitään keinoja joilla siihen pyritään. Näitä keinoja esiteltiin Hesarin jutussa.


Helsingin sanomien jutussa olleessa kuvassa on kuvattu päästövähennystarve hiilineutraaliin Suomeen.

”Kivihiilen mukana päästöjä siirtyy historiaan noin 7 miljoonaa tonnia. Pelkästään tällä viidennes vähennysurakasta on kuitattu.” HS 3.2.2020.

Jutussa kerrotaan, että kivihiilen kieltävä laki vähentää päästöjä 7 miljoonaa tonnia vuodessa. Mutta se, että kivihiili kielletään, ei poista energian tarvetta joka kivihiilellä on tyydytetty. Kivihiili siis korvaantuu muilla energianlähteillä.

Mikäli nämä perustuvat polttamiseen, niistä tulee myös päästöjä. Bioenergian kohdalla nämä päästöt lasketaan maankäyttösektorille. Tämä johtaa siihen, että koska maankäyttösektorin päästöt ovat mukana hiilineutraaliustavoitteissa, ei nettovähennystä tapahdu periaatteessa lainkaan – paitsi mikäli poltettu biomassa onnistutaan kaalimaan kokoon ilman hakkuiden kasvattamista. Esimerkiksi ohjaamalla selluntuotantoon menevää kuitupuuta energiapuuksi – mikä puolestaan vähentää selluntuotantoa – tai tuomalla puu muualta Suomeen poltettavaksi. Periaatteessa myös risuja ja muita hakkuutähteitä voidaan kerätä entistä tarkemmin talteen hakkuiden yhteydessä.

“Lisäksi biopolttoaineiden jakelupakkoa liikenteessä on jo päätetty nostaa vuosi vuodelta 30 prosenttiin” HS 3.2.2020

Biopolttoaineet tehdään nimensä mukaisesti biomassasta. Mikäli saatavilla ei ole muuten hukkaan meneviä jäte- tai biomassavirtoja, niin biopolttoaineisiin tullaan käyttämään joko uusia biomassavirtoja (maankäyttösektorin päästöt kasvavat) tai niitä ohjataan sinne muista käyttökohteista, jotka puolestaan joutuvat joko luopumaan tuotannostaan tai etsimään muita raaka-ainevirtoja jostain (jolloin päästöt siellä kasvavat). Eli tässäkin kohtaa biopolttoaineisiin siirtymisessä on se riski, että päästöt siirtyvät yhdeltä sektorilta (liikenne) toiselle (maankäyttö).

”Suurin yksittäinen kohde on turve. Jos turve saadaan pois energiakäytöstä, päästöistä häviää yli 7 miljoonaa tonnia. Tosin sanoen puuttuvasta 19 miljoonasta tonnista olisi hoideltu jo lähes 40 prosenttia.” HS 3.2.2020

Tätä lausahdusta koskee sama ongelma kuin kivihiiltäkin yllä. Turve joudutaan korvaamaan muilla energialähteillä. Todennäköisesti, etenkin nopean kiellon tapahtuessa, tämä tulee olemaan enimmäkseen puuta. Puun päästöt lasketaan maankäyttösektorille, joten päästö siirtyy jälleen kerran yhdestä paikasta kirjanpidossa toiseen paikkaan. Toisin sanoen, tuo 7 miljoonaa tonnia päästövähennyksiä ei tule tapahtumaan, ellei turvetta korvata täysin polttoon perustumattomilla energiamuodoilla tai puulla, joka ei tule lisääntyneistä hakkuista.

Jutussa mainitut yli 15 miljoonan tonnin ”toteutuvat päästövähennykset” eivät siis ole millään tavalla vielä toteutumassa – ne ovat ennemminkin siirtymässä yhdestä sarakkeesta kirjanpidon toiseen sarakkeeseen. Se, paljonko niiden osalta päästöt vähenevät, riippuu täysin siitä, millä ne korvataan.

Maankäyttösektorille tuntuvat kaikki haluavan siirtää päästönsä, niin energiantuotanto kuin liikennekin, mutta jos mitataan Suomen nettopäästöjä ja hiilineutraaliutta, niin maankäyttösektori on niissä mukana. Tässä yhteydessä kakkua ei voi sekä saada että syödä.

Energialähteen tai polttoaineen kieltäminen ei tarkoita sitä, että kyseisellä polttoaineella tuotettu energiakulutus maagisesti poistuu, vaan se pitää korvata jollakin muulla. Millä se korvataan riippuu siitä mitä on saatavilla sekä paikallisista olosuhteista. Esimerkiksi kivihiilikielto lisää tarvetta maakaasun, turpeen ja bioenergian polttamiseen – jotka kaikki aiheuttavat päästöjä.

Toisaalta pienillä kaukolämpöä tuottavilla ydinreaktoreilla, syvällä tai keskisyvällä maalämmöllä tai sopivia hukkalämmönlähteitä hyödyntävillä lämpöpumpuilla kivihiiltä ja turvetta voidaan korvata Suomen päästökirjanpidon kannalta aidosti päästöttömästi.

Ps. Energiasektorin päästövähennyksiä ohjaa Euroopassa päästökauppa, joka antaa päästöille sekä katon, että lattian. Turve ja kivihiili kuuluvat päästökaupan piiriin, mutta bioenergia lasketaan siellä päästöneutraaliksi (koska se on kirjanpidossa maankäyttösektorilla). Päästökaupan piirissä tapahtuvat kansallisiin lakeihin perustuvat toimenpiteet eivät itsessään vähennä päästöjä Euroopan tasolla.

Pps. Mikäli olen mielestäsi väärässä, kerro ihmeessä. Kirjoitin jutun varsin nopeasti, joten virheitä voi hyvinkin olla.


Olen mukana erittäin jännittävässä Nesslingin säätiön rahoittamassa ilmasto-video-projektissa, jonka eka jakso julkaistiin juuri. Aiheena Ruoka ja sen päästöt.


Ilmastotuubin ensimmäinen jakso on nyt täällä! Aiheena on ruoantuotannon ilmastovaikutukset ja tubettajina ensimmäisessä jaksossa ovat Arttu Lindeman ja Jaakko Parkkali.

Haluatko oppia lisää? Lyhyen ja tiivin materiaalin ruuantuotannon ympäristövaikutuksista sekä opetuskäyttöön soveltuvat diat löydät täältä. Taustamateriaalia voi vapaasti käyttää opetuksessa tai vain itsensä sivistämisessä. Mukana on myös tehtäviä!

View original post

Brexshit, anyone?

brexitmemeIn 2015, the people of UK voted to leave EU. Fine, one gotta respect the people’s opinion if one has asked for it. Not sure if calling for that vote was the best or smartest move in global, or even UK political history, but it happened, and during the campaign months the people of UK were promised many good things if they leave the EU.

Now, over 3 years later, it seems that almost none of those good things are happening. Instead, a lot of shit seems ready to enter the fan as there seems to be no way that the British politicians will accept the deal that EU is willing to give them. If no deal is done soon, there will be a “Hard Brexit”, or “Brexshit” as I call it.

I think it is high time that the people of UK are called to vote if they want Brexshit to happen. I mean, they voted for Brexit, but clearly that is not possible, nothing nearly what they were promised is going to happen. Instead, they are looking at Brexshit, which is something completely different. Having the people vote for one thing and giving them something else is not proper, now is it?

It is a bit like if I was asked to move to Sweden if I would also get a nice house in Stockholm, a free Tesla to use, health care for the whole family, a good job for me and my wife and a million Kronor per year on my bank account on top of my salary (that’s about 100,000 euros. Not much, I know, but I’m being reasonable with my analogue here). I love living in Finland, but I might be persuaded to vote yes on that personal Fixit, and so might the family (kids would not be asked as they are underage – although they would be the ones to take the actual hit, but there is politics for you).

Now, as I would start to pack my bags, say goodbyes and sell my house in Finland, those conditions would start to evaporate one after the other. Suddenly, I would not get a house in Stockholm, but a single-room apartment for the whole family of 5 at the outskirts of Malmö (for example), for which I would have to pay for. We would not get the jobs, nor the money promised (but surely, I would be free to apply for any job that I would want!) My Tesla would become a 1992 Toyota Camry that I would have to pay for myself, and I would have to go through years of bureaucracy to get my family health care in order. My Fixit would be turned into Fixshit.

Somewhere along the line, I think that I would like to have another go, another family vote, on the decision to move so Sweden or not. The deal would have clearly changed, so I would like to reserve the right to change my mind about it as well. I did not vote to “move to Sweden no matter what shit it causes.”

And neither did the people of UK.

Ps. I love Sweden. It’s the second-best country in the world. After Finland.

COP24 – Poland – You are the Champions

Wednesday, my last day at COP this year. We had a busy day with lot of prepping to do, so we started out early.

Originally, there was a plan to give out Climate Champion of the Day award on every day of the COP, in a more positive response to the “Fossil of the Day” -award that Climate Action Networks has been giving for years and years. But having such a booking in some public area for each day had proven to be impossible. So plan B (or maybe it was even plan C) was to book a meeting room for one session and announce all the nine champions of the day in one session.

As it turned out, even getting a meeting room for one hour was tricky. And that is why we were there early in the morning, asking if our application for a room had passed. It had not. But we were given an option: get one room from 6 PM to 7 PM or wait for some magic to happen to get an earlier booking (and be announced about it half an hour earlier, leaving no time for preparation). After 30 seconds of deliberation, we took the evening.

Big Al, big show

But first, we went to see Al Gore give his presentation. The room was packed with hundreds, if not thousands of people, listening Al give them his best. And I have to admit that it was good. Nice looking, good quality slides came and went at high speed on the enormous screens while Al delivered his comments and insights. A perfect presentation for that crowd, with lots of examples how Solar PV or wind energy was growing in places around the world.


Mr. Al Gore, delighting the crowd with a nugget of information that the Kentucky coal Mining Museum had installed solar panels on its roof.

But very little talk of emissions. The disturbing thing for me was that from listening to him, one could get the image that shitloads of stuff was happening, and hence we need not worry. But still, as annual emissions keep on rising, it is pretty clear that shitloads is nowhere nearly enough. And to give Al some props, he said it himself; despite all this progress, we are nowhere near the speed of decarbonization that we need.

Even nuclear was mentioned, somewhere in the lines of “Nuclear has also been growing, but we can talk about that another time”. It made me want to laugh and cry at the same time. Our second largest clean energy source, and the only one that has so far proven to be fast and scaleable, got 3 seconds from Al. There is still a lot to do to normalize nuclear energy in society and public discussion. If we are to stop climate change, we need to get as excited about nuclear as we are on wind and solar and batteries and all the rest.

More Melty the Bears!

In the afternoon we also had another 30 minute session with Melty the Bears at the hallway. It was again a huge success, with dozens of people taking pictures of and with our three Meltys. Such a nice way to bring positivity to the climate fight, with inclusive, rather than exclusive, toolbox of solutions.


Not one, not two, but three Meltys!

Climate Champions Award

After the show with Al, and our polar bear photo-shoot, we got a couple hours of time before the Climate Champions award, so I did what anyone would have done at that point: I took a quick nap.


The stage is set. **Drumroll**

Given that our session was rather late in the evening, and in the farthest end of the conference area, almost no people showed up for our award. This was to be expected, as we had had very little time to advertise for it. But we did it, and no doubt there will be some sort of video of it out later. The Nordic countries of Sweden, Norway and Finland got their award as well for having largely decarbonized electricity systems and other progressive policies in place (and in Finland for extending Olkiluoto 1&2 lifetimes, building new nuclear and having a ban for coal energy use by 2029). Personally, I did not fully agree with all the reasons for all the champions, but that is just me; never happy about it, always finding something to complain about 🙂 (Actually, it’s not me, it’s them: they should stop making bad calls and counterproductive policies. I stop complaining as soon as that happens).

Book signing of Polish Climate Gamble

Right after the event, we rushed to a local micro-brewery/bar, where we had reserved the downstairs room of the bar for a book-signing event to celebrate the release of the Polish version of Climate Gamble. Good beer, good food, good people and friends, both old and new, all on a mission to save our climate, with a lot of laughter and love. And nuclear energy as part of the solution.

What better way to wrap up the day and the COP?

Epilogue – Distributed energy production poverty at display

Adam, an amazing local activist, my gracious host and designated driver (thank you so much once more), took me to the airport in the next morning. During the week, we had had many good conversations of the Polish energy situation and policies. One consistent theme was this:

What would happen to Polish energy prices, competitiveness and people’s living standards if (and when) the prices of emissions rights would increase in the European Emissions Trading System (ETS)? The German utilities have bought a couple years’ worth of cheap emissions rights in advance, but the polish utilities maybe didn’t have the capital to do that, so they are already feeling the sharp increase in emissions prices (from 7 euros / ton to 20 euros / ton in the last year) and have been forced to increase electricity prices as a result. This hits the poor first and worst, as they have limited amount of disposable income to start with.


Distributed energy meets energy poverty: ”For the love of God, don’t burn trash!”

Energy poverty will get real, and it might do so faster than we would like to think. Polish industrial competitiveness will suffer, leading to less jobs and less disposable income in the economy, leading to less jobs also in the services sector. And what do people do when they don’t have money to heat their house with electricity? They burn coal and even trash in their home-stoves (also in the cities, where the air is already smelly and hard to breath due to coal plants and old diesel cars).

And on the way to the airport, we saw a vivid example what that looks like. ”For the love of God, don’t burn trash!”

Thanks for reading. I’m headed back home now. Can’t wait to get to my family and put the sauna on…

Ps. The event of nuclear supporters being thrown out from the climate march that I told you about in my Day-0 report has gathered a lot of press here in Poland, with majority of the people seeing it as wrong. The discussion has started. We need to keep it going. We need to keep it focused on facts.

COP24 – Day 3 – Winter is coming for the headless chicken

Winter finally came to Poland, with snow falling. We had a bit slower morning, writing up journals and preparing stuff, and we got to the venue a bit before noon.

day4-3There were not much in the way of activities, so I will write a bit about this pretty interesting company and product they had on display, called carbon fibre stone. Basically, it is a mixture of carbon (made from lignin – something that we have been trying to find good uses for in Finland as well), made into a fibre and mixed with stone, like granite.

So it can be carbon negative (if made with clean energy, obviously), it is very, very hard and durable so you can use it for building and reinforcing buildings. You can make walls that are stronger, lighter and thinner than concrete. You can reinforce constructs like dams. They had a bar of it on display and it felt pretty amazing. Of course it takes energy to make, such as high temperatures and electricity, but it was, for my cynical view, one of the more exciting innovations that could decarbonize concrete and steel manufacturing by replacing them with a carbon negative material. I did not see any Finnish companies in the list of participants in the projects, but I think we need to get a few out there. This sounded like a very potential game-changer.

I also met briefly with Greta, the now-famous 15-year old Swedish school girl who is on school-strike, after she was interviewed by Amy Goodman on Democracy Now -TV show. Gave her a copy of Climate Gamble. Also gave Amy a copy of Climate Gamble, just in case. You miss a hundred percent of the shots you don’t take, as the saying goes :).

Amy Goodman, shooting Democracy Now. We didn’t get to the show. Yet. 

World Climate Summit

In the afternoon we went to World Climate Summit, a side-event for investors and business people. They had free food and beverages on offer, so that was part of our motivation, but the session we attended was one of the more sober ones I’ve been to in a while. It seems these financing people have a tendency to do a lot less hand-waving-as-a-solution than many of the environmental-policy or renewable energy advocate/researcher -types I’ve seen. Granted, they are still mostly proposing hand-waving as a solution and seem to have a chronic problem in saying the N-word, preferring to stick to the renewables-gospel. But here is the thing:

Not all renewable energy is clean. And not all clean energy is “renewable”.

Still, there were some good points. How do we increase the ambition of our targets and make sure we get to them (in accordance to Paris agreement), while we have not been reaching even our current meager goals? Goals are meaningless unless we have means and projects up and running to reach them. How can developing nations fund NDC-projects (nationally determined contributions) if they barely have funding for key-stuff in their budgets to keep their country and economy from collapsing? All the while applying for funding from international organizations is a slow, work-intensive and unsure process.

And then we have a lot of countries that have economic goals and projects that are not compatible with their NDC’s. The ministry of environment says one thing, and the ministry of transport and economics (ie. the ministries with all the government money) say something else. There is a discontinuity, which in turn creates uncertainty for the private sector that has all the rest of the money. What are the aims? Policies that will be set to achieve them? Will they stay put or change? What will the level of support and business opportunities be and how will they manifest?

The whole thing (the situation they were describing) reminded me of headless, one-legged chicken running around aimlessly, trying to find the hidden grain that kept on changing location. We clearly need to know what we need to do. Right now, we don’t even know how we might find that out. A few people might, but the rest of us don’t know whom they should listen to.

Ps. In Poland, there is now one good option people might listen to. A new evidence-based environmental organization has recently been founded. You can learn more at their Facebook page here!

COP24 – Poland – First day at conference

On Monday I finally got to the COP24-site, with thousands of others. It turned out to be a productive day with a lot of good discussions with people about the inclusion of nuclear energy into our climate effort, handing out Climate Gambles in English and Polish as well as Thies’s excellent Climate Zero Hour -books.

It turns out that it is very hard to get a permission to do a small public event inside the COP. Well, at least if your event includes factual and positive information about nuclear. But we finally got one. So on went Melty the Bear -costumes while we hosted what became a photo-shoot / nuclear discussion with people going by. We had pictures taken by dozens of people during our half-hour slot, from regular students to country ministers.


Melty the Bears doing photoshoots. She rocks. 

The side-event held by the US drew a lot of people. So much, that we failed to get in, although they said that we could go in when the protesters have done their thing and leave. And yeah, there was chants like “Keep it in the ground” heard even in the next room, which joined in.

Slightly afterwards, the protesters rallied with their signs nearby. By this time, the “Don’t nuke the climate” people sneaked in with their banner as well, although they were not part of the protesting group, essentially trying to brand the whole thing as anti-nuclear. At this point my good friend Eric started to pull out his “Melty the bear” costume, muttering “Oh hell no, we can’t let this happen.”

Noticing the costume coming out from the bag, one of the protest organizers asked what it was. Eric explained it is an inflatable polar bear for nuclear power -costume. The organizer’s eyes widened, and he said we are not having any banners or such. At this point, Eric pointed out that there is a big-ass anti-nuclear sign right there, even though nuclear is our second largest source of low-carbon energy and the IPCC says we need shitloads of nuclear. The organizers eyes widened even further as he noticed this, and he said that yeah, we need to take that down as well. And they did.

(we will have some interesting video footage coming up on this, stay tuned)

Fossil of the day-award

Every night at 6 PM, Climate Action Network (CAN) gives out the Fossil of the Day -award, so we went to check out the proceedings, and it left me somewhat perplexed. This day, the award went to Austria, which was definitely the right place in that the Austria is one of the most anti-nuclear countries that very much likes to impose their ideology to other European nations as well. As you can guess, this was not the reason for the award though (Climate Action Network is the same people that warned about us in their newsletter as I wrote in my previous journal).


Fossil of the Day award drew a big crowd and they made a good show of it. If only they put climate first instead of being anti-nuclear first. 

Austria got it for their leadership in instrumenting capacity markets/payments for coal, natural gas and nuclear plants to help keep them online (as far as I understood it). That is what they said. There are a few problems with this. First, I am pretty sure that nuclear has received very little money from this, and that they mentioned it just to make it “part of the evil energy source group” as coal and gas. At least I have not heard of any nuclear plant being paid capacity payments, as they are pretty much run at full power all the time anyway. Second, I don’t think Austria would agree, let alone push for, any policy measure that would see a cent of public money going to nuclear.

And finally, as a clean energy source able to back up intermittent renewables, nuclear (if anything) actually should receive capacity payments, as the capacity is required due to the increase of intermittent energy production such as win ad solar – and nuclear together with hydro, is the only way to manage that with very low GHG emissions.

And herein lies the slight hypocrisy of the award. These people (CAN) demand ever more intermittent renewable energy such as wind and solar. Yet we need also keep the grid operational, and that means we will need to have something in reserve for when the sun and wind go down or there is not enough of them. Which is often. So now we have capacity markets for fossil plants so that they can stay on stand-by and still cover their fixed operation and maintenance costs. Essentially (in simplified explanation), this is what has happened:

  • We first pay feed-in-tariffs and other subsidies to add intermittent renewable energy.
  • This means that the load factors of other power plants go down, as on windy and sunny days, their production is not needed. Yet they have a certain level of costs they need to cover to stay open. Many plants face closures, endangering grid stability.
  • So next, we need to pay again to keep these plants open, as they are needed in order to keep the grid stable and the lights one, fridges running, houses warm and factories running.

While I am not in any way against renewable energy, they should, by this point, be able to operate on their own, without subsidies, and cover their own costs, which are now being paid by everyone else. This is only fair, and obviously this needs to apply to fossil fuels as well (nuclear covers its costs quite well already as I wrote in my previous piece). They are externalizing their costs (air pollution, GHG emissions) to the rest of us every day at massive scale, and this is the main reason they are so competitive against clean energy.  In essence, fossil fuels are not competitive, they just rigged the game so the market thinks they are.

COP24 – Poland – Day 1 – The Long Shadow of History

day2-3My second day here was Sunday, and we hooked up with the Generation Atomic crew for a trip to Auschwitz-Birkenau. Oh man. What a reminder of the utterly horrific capabilities of mankind. When we really put our minds to it, we seem to be extraordinarily capable of hurting and destroying each other in imaginatively horrific ways.






A sign at the museum, detailing some of the atrocities.

It is one thing to look at the numbers in the info-board. It is another thing to look at the endless rows of pictures of people who were tortured and murdered there. I wanted to take some pictures, but I at the same time I could not. I noticed that I can’t take the risk of having a reminder. I noticed thinking that I want to forget those images and pictures and those dates on when they arrived and when they died. A whole hallway full of them, one after the other after the other. Men. Women. Children. The same age as mine. I want to forget those faces I saw, belonging to real people, and at the same time I do not. I should not. We should not.


In the background is Birkenau, an industrial-scale human destruction camp. On the foreground is the fence surrounding it. 

The anti-nuclear people get back to it again

While back at our Airbnb in the evening, I got a hold of a leaflet produced and spread by Climate Action Network, the same group also giving out the “Fossil of the Day” -awards. Given that they apparently do give a fuck about climate, it would have been extremely nice if they had bothered with some fact checking instead of the usual misleading and dishonest anti-nuclear rhetoric and half-truths. This small article, pictured below, is surprisingly full of those.


Picture of the newsletter doing the rounds here.

Let’s get a few of their claims sorted before I go to bed. Usually there are three levels to check in these claims. First, are they factually correct and current as per mainstream understanding of the science. Second, is the argument logically coherent. Third, what happens when you compare the claim with the same standards and level of rigor to other options.

Humanity is extractive

Is nuclear industry “extractive” like they claim? Of course, as are all other industries. The main point to take home here is that it is actually much less material-intensive (read: extractive) than practically any other energy source we use, including wind and solar. So, by saying that nuclear industry is “extractive”, these people are also saying that all the renewables are many times as extractive. The problem is, these comparisons are never done – they seem content in pointing out that nuclear has this or that effect on the environment, but fail to mention that so does everything else, often at much bigger scale. This is not information, it is plain propaganda that is meant to mislead.

Of the uranium supply, around half is today produced by in-situ leeching, which basically requires no mining operations at all. The rest come from more traditional mines, both from dedicated uranium mines and as by-products from other mines. A while ago I wrote a more detailed piece on mining which you can read here.

The Report to end all Reports

Then there is this report that is coming out, supposedly disproving what the “nuclear lobbyists” have claimed as the climate impact of nuclear energy. Well, first of all, I’ve been around a bit, and pretty much the only thing that I have ever seen any nuclear lobbyist claim is the same thing that the science, led by the IPCC, has been saying for years, as resulting from their thorough literature review in their Fifth Assessment Report (2014). It says: nuclear is very low carbon, comparable to wind (without backup).

So supposedly this report that is coming out single-handedly disproves all the previous research done on the subject. That is a tall claim and we shall see what evidence they have to back it up – it is pretty clear that none of the actual physics of the matter have changed, although the energy inputs of uranium enrichment, for example, have fallen since AR5 (as we moved fully to centrifugal enrichment, which is around 50 times more efficient than the previous technology).

Fear, uncertainty, doubt – but no information

What bothers me is that these writings are always full of adjectives, but almost never have any actual substance, numbers or mainstream scientific references (yes, you can always find fringe-studies to prove just about everything if you try hard enough).

They claim that public money is being used to subsidise nuclear energy, which is probably a true statement as such; everything we do gets some kind of support. What they again fail to note is that nuclear receives quite little of this public support per energy produced, compared to pretty much every other energy source. As I said, these never do any comparing, but only point out what nuclear has or does.

They even manage to accuse IAEA of many things, for which they provide no evidence, which is, in my view, both outrageous and extremely arrogant.

Ps. You can read more about energy subsidies from Kitson, L., Wooders, P., Moerenhout, T. (2011) Subsidies and External Costs in Electric Power Generation: A comparative review of estimates. International Institute for Sustainable Development (IISD)/Global Subsidies Initiative. Winnipeg.

COP24 – Poland – Day 0

The Polish edition of Climate Gamble joins the family, adding the total number of translations to six!

It is that time of the year again. The time of climate negotiations.

One would like to imagine that it is a rewarding and positive thing to advocate for clean power and to try to save the future generations from climate catastrophe. I mean, I just got into Poland for the climate negotiations, to do just that, and it’s not the first time I’m attending these big-time conferences. So great, right? Travel to places, see the world and all that.

Well, let’s see. I used my own money to buy the tickets, the accommodation, I’m using my own time and money to be here, and not being able to make any money while I’m here. I’m also paying the translation of Climate Gamble Polish edition from my own (family’s, really, we are communists in that way that we have shared money) pocket so that I can come here to give them away to people, for free. I can tell you it is not a good business to be in.

But at least it is a rewarding thing in itself, right? Have interesting and fruitful debates with smart people on energy and climate policy, and plan how we can save our planet for future generations! Surely something you would gladly pay a month’s salary and abandon your family for a week just to experience! (I hope the kids’ fever is down though…)

If only we could power those pretty lights with something other than coal…

We need shitloads of nuclear for climate

Well, the other people who arrived here earlier were attending this big climate march on Saturday (when I was still traveling). Obviously, they were among the few people there in open support of nuclear to be included in our toolbox to fight climate, given that it has been our most efficient, fast and cost-effective way to decarbonize energy systems – which is something we really need to do really fast. The IPCC (2018) agrees, having as much as six times our current nuclear capacity by 2050, and so does any relevant real-world case of decarbonizing energy systems (Sweden, France, Switzerland, Belgium, Ontario etc).

Enter the anti-nuclear people

So, it was no surprise that some people disagreed. This time, the way they did this was extra-disturbing for me (and I only heard it from the people who attended, not experiencing it myself). First, they come and say we need to leave because us being there is anti-democratic. Ummm… Wait, what, how is us being there anti-democratic? We never found out.

And that is not all. Then you have a lady physically pushing herself on to some of our people, hard, and then claiming these people were touching her against her will. Yes, you read that right. In the end, the organizers of the march asked the police to kick us out. Why? Well, after inviting everyone to attend and come there with signs telling what is in their hearts (obviously our signs had atoms and renewables…), to bring drums and make noise, we were kicked out for being too noisy. Or something.

Meanwhile other people physically assaulted Eric in order to silence him while he was singing. And not for the first time, the same happened last year in Bonn, COP23. Very, ahem, democratic move there.

Is this really the level at which anti-nuclear people want to operate? This kind of behaviour is totally unacceptable in any remotely democratic country, and even less so in an open march and a demonstration for climate! Intimidation, baseless accusations and physical violence. Really? For climate?

Rokotevastaisuudesta ja siitä keskustelemisesta

Hesarissa julkaistiin lasten rokotuksia käsittelevä mielipidekirjoitus, jossa kirjoittaja oli sitä mieltä että heillä on täysi oikeus jättää lapsensa rokottamatta, eikä muiden ihmisten tai yhteiskunnan pitäisi siihen puuttua tai rokottamiseen kannustaa. Keskustelu aiheesta on sinällään hyvä asia, sillä vain yhden totuuden sallimisessa ollaan aina vaarallisilla vesillä. Ei tiedekään toimi niin – asiat ovat faktoja kunnes toisin todistetaan, ja tälle toisin todistamiselle pitää varata ainakin hieman tilaa vaikka kyse olisi varmoinakin pidetyistä asioista.

Tosiaalta, jos julkaistaan tämäntyylisiä mielipidekirjoituksia niin niihin olisi kenties asiallista pyytää ja julkaista vastine viereen – keskusteluahan tuo kirjoittajakin tuolla penää. Tässä mielessä Hesarin toiminta oli asiatonta klikinmetsästystä.

Haluan kuitenkin nostaa kirjoituksen esille ja tarjota tuon ”vastineen” kirjottajan argumenteille (myönnän: en ole ollenkaan asiantuntija näissä asioissa, koetan lähestyä asiaa logiikan ja asiasta hieman lukemalla oppimani kautta – joten voin olla väärässäkin!). Kirjoittaja penää siis keskustelua ja faktoja rokottamisesta, joten saamansa pitää:

Puhutaan siitä että rokottamattomat lapset ovat usein terveitä.

Puhutaan vaan. Tämä johtuu käsittääkseni paljolti siitä, että laumasuoja (muut rokotetut lapset) suojaavat heitä, sillä taudeilla on vähemmän reittejä päästä populaatioon käsiksi. Lisäksi rokottamattomat lapset ovat terveitä siksi, että monet taudit on onnistuttu pitkälti hävittämään rokotusten ansiosta. Paitsi että nyt, kun osa ihmisistä on päättänyt jättää lapsiaan rokottamatta, ne ovat tulossa takaisin.

Puhutaan siitä, kuinka rokote ei välttämättä suojaa taudilta.

Puhutaan vaan. Mikään suoja ei tietenkään ole 100 % varma, mutta kyse on todennäköisyyksistä ja sitä kautta tilastoista ja jälleen kerran laumasuojasta. Keskimäärin rokote suojaa taudeilta varsin hyvin ja ainakin voi lieventää oireita jos tauti tarttuukin. Pieni osa populaatiosta on sellaisia, että heitä ei jostain syystä voida rokottaa. Muiden velvollisuus on tarjota näille yksilöille mahdollisimman vahva laumasuoja, tai näin sen ainakin itse solidaarisuuden ja yhteiskunnan näkökulmasta näen.

Entä millainen on lääkefirmojen lobbausvoima?

Varmaankin melko suuri. Ja sen vuoksi niiden toimintaa pitää valvoa tarkkaan (ja valvotaankin). Mitä sitten? Onko niin että meidän täytyy yhteiskuntana hyväksyä ainoastaan pienten yritysten kehittämiä ratkaisuita? Ja päteekö tämä nyt ihan varmasti myös rokotusten ulkopuolella? Jättääkö kirjoittaja ylipäätään lääketeollisuuden (ja siten pitkälti koko terveydenhoitosektorin) palvelut kaikki käyttämättä sillä perusteella, että ne ovat peräisin lääkefirmoilta, joilla on lobbausvoimaa?

Onko niin, että rokote­kriittiset lääkärit eivät lääkärinluvan menettämisen pelossa uskalla sanoa mielipidettään?

No, en tiedä, voi jopa olla, ja oikeastaan hyvä niin, koska jos lääkärit sooloilevat selkeää lääketieteellistä tutkimuskonsensusta vastaan, he eivät ole lääkäreitä, vaan puoskareita. Lääkäreillä on toki jonkin verran joustoa siinä, millaisia hoitoja he suosittelevat potilailleen, ja erilaisia hyvä hoito -suosituksia myös käytetään. Mutta jos lääkäri on selkeästi eri mieltä lääketieteen vahvimpiin lukeutuvien konsensuksien kanssa: rokotteilla on paljon suurempi hyöty kokonaisuuden kannalta kuin mitä riskejä niihin liittyy, niin silloin hänen ammattitaitonsa ja -etiikkansa on minusta syytäkin kyseenalaistaa (tietenkin poislukien ne lapset, joilla jokin oikeasti estää rokotuksen turvallisen ottamisen). On tietenkin toinen asia tehdä aiheesta tutkimusta ja julkaista tieteellisiä artikkeleita niiden pohjalta, ja kenties muuttaa konsensusta sitä kautta.

Sen sijaan, että painamme paniikkinappulaa heti, kun yksi lapsi sairastuu tuhkarokkoon, voisimme keskittyä parantamaan terveyspalveluita, jotta kansalaiset pysyvät terveinä ja saavat apua ja tukea, kun sairastuvat.

No tätähän tässä yritetään nimenomaan tehdä! Rokotukset ovat erittäin kustannustehokas tapa parantaa terveyspalveluita! Jos tämä tehdään kalliimmilla tavoilla, jää rahaa ja voimavaroja vähemmän terveydenhoitoon tai johonkin muuhun julkiseen palveluun. Parannetaan ihmeessä terveyspalveluita, mutta jos haluamme paremmat terveyspalvelut suhteessa samoilla resursseilla, meidän pitää lisätä mahdollisimman kustannustehokkaiden hoitotapojen ja ennaltaehkäisyn käyttöä, ei suinkaan vähentää niitä! Tätä kautta resursseja jää avun tarjoamiseen sen varalle, kun sairastutaan.

Kun vanhemmat ovat neuvolassa asiasta keskusteltuaan päättäneet olla rokottamatta, koska uskovat rokotuksesta voivan olla lapselle enemmän haittaa kuin rokottamatta jättämisestä, sitä tulee kunnioittaa. Vanhemmilla on oikeus päättää asiasta eikä heitä voi kiristää ­rokottamaan lapsiaan uhkailemalla sosiaalietuuksien tai julkisten palveluiden menettämisellä. Liikumme vaarallisilla vesillä, kun puheena on tällaisen perusoikeuden polkeminen.

Vanhemmilla on tietyissä asioissa tosiaan oikeus vaarantaa lapsensa terveys. Tosin olemme sopineet, että yhteiskunnalla on myös oikeus puuttua tähän, ja johonkin pisteeseen asti olettaa, että kansalaiset pelaavat niin sanotusti mukana ja yhteisten sääntöjen mukaan, eivätkä hankaloita muiden ja yhteiskunnan toimintaa kohtuuttomasti. Tai jos näin tekevät, maksavat toimintansa kulut itse eivätkä oleta, että muut rientävät hätiin.

Jos siis vanhemmat haluavat oikeutensa nostaa lapsilisiä ja nauttia yhteiskunnan (siis muiden kansalaisten) tarjoamista etuuksista ja palveluista, niin yhteiskunnalla (muilla ihmisillä) on minusta oikeus olettaa, että vanhemmat vastavuoroisesti kantavat oman vastuunsa ja osallistuvat yhteiskunnan hyväksi näkemiin ohjelmiin, kuten neuvolassa käynti, jälkitarkastukset ja vaarallisia tauteja vastaan rokottaminen, puhumattakaan siitä että lapsi laitetaan autossa turvavöihin (vaikka on täysin mahdollista että jossakin onnettomuustilanteessa kävisikin paremmin jos vöitä ei olisi ollut). Nämä kun osaltaan pitävät yllä kansanterveyttä kustannustehokkaasti ja siten takaavat sen, että jatkossakin meillä on työkykyisiä ihmisiä maksamassa mahdollisimman kustannustehokkaita terveyspalveluita.

Haluan tukea lapseni terveyttä ja vahvistaa hänen oman kehonsa toiminta- ja vastustuskykyä enkä pumpata siihen vierasaineita.

Tässä oikeastaan käy ilmi, että koko rokottamisen ideaa ei ole ymmärretty. Ne vierasaineet tulevat sinne kehoon kyllä lopulta ihan ilman pumppaamattakin: sitä kutsutaan sairastumiseksi. Lapsen vastustuskykyä parannetaan rokotuksien ”vierasaineilla” kontrolloidusti, ennen kuin kehoon pääsee se kontrolloimaton tekijä, joka kyllä voi parantaa lapsen vastustuskykyä, tai sitten se voi tappaa lapsen tai vammauttaa hänet pysyvästi. Kuolleet lapset eivät mielipiteitä paljon kirjoittele, siksi saamme yleensä kuulla lähinnä näitä ”ihan hyvin meilläkin meni”-tarinoita.


Ilmastokriisi ja Ydinvoima – Vastine Aamulehden mielipidekirjoitukseen

Vihreiden Tampereen valtuutettu Juhana Suoniemi kirjoitti äskettäin Aamulehden mielipidepalstalla otsikolla, ”Ydinvoima ei ratkaise ilmastokriisiä.”

Hänen käyttämänsä argumentit ovat kiertäneet ydinvoiman vastustajien keskuudessa jo kenties vuosikymmeniä, ja käymme ne läpi lyhyesti teoksessamme Uhkapeli ilmastolla sekä seikkaperäisesti teoksessamme Musta Hevonen – Ydinvoima ja Ilmastonmuutos.

Mutta käydään ne nyt vielä pikaisesti läpi tässä. Oletan vastineissani tämän: ilmastokriisi halutaan todella ratkaista.

”Ydinvoimaprojektit tuppaavat kestämään kauan.”

Niin tuppaavat, koska ne ovat isoja projekteja. Tehoonsa nähden ne ovat kuitenkin verrattoman nopea tapa lisätä vähäpäästöistä energian tuotantoa (kts kuva alla). Ja jos ne kestävät kauan rakentaa täällä Suomessa ja länsimaissa, niin kenties meidän olisi hyvä selvittää miksi, ja poistaa näitä viivästyksiä. Niille kun on syynsä.

Paras puhtaan energian lisäysnopeus 15 vuoden aikana. Lähde BP 2018.

”Ydinvoimalla tuotetaan noin kymmenen prosenttia maailman sähköstä ja sähkö on vain osa (toim. Huom: se on noin viidennes) maailman energiankulutuksesta”.

Niin. No tässähän se ongelma juuri on. 85 % maailman energiasta tuotetaan fossiilisilla. Auringolla ja tuulella tuotetaan yhteensä hieman ydinvoimaa vähemmän. Jos ilmasto-ongelma halutaan ratkaista, niin näitä tarvitaan lisää. Eihän kai kukaan vastusta aurinkoa tai tuulivoimaa sillä syyllä, että niillä tuotetaan vain pieni osa sähköstä?

”Geologian tutkimuskeskuksen mukaan tunnetut uraanivarannot riittävät nykyiselle kapasiteetille noin sadaksi vuodeksi”

Jep. Ja kuparivarannot riittävät pariksi vuosikymmeneksi, ja sama oli tilanne jo sata vuotta sitten (noin karkeasti kuvailtuna). Silti kuparia edelleen tuotetaan, enemmän kuin koskaan. Myös lähes kaikki uusiutuvien energialähteiden vaatimat erikoisemmat mineraalit loppuvat kesken kauan ennen kuin niillä saadaan kovin merkittävää lommoa aikaan globaaliin energiamixiin. Paitsi että ehkä eivät lopu. Tuo Geologisen tutkimuskeskuksen lausunto kuvaa tilannetta nyt: Nykyiset tunnetut (siis jo löydetyt) varat, jotka ovat tuotettavissa nykyisillä teknologioilla ja -hinnoilla. Kun niukkuutta tulee kysynnän kasvaessa, hinta nousee ja etsinnät käynnistetään (tähän mennessä aina kun uraania on etsitty, sitä on myös löytynyt), toimintoja tehostetaan, vaihtoehtoisia lähteitä aletaan hyödyntää ja niin edelleen. Tuo sadan vuoden riittävyys on itse asiassa mineraaleille poikkeuksellisen pitkä aika. Viimeinen pysäkki on valtameret, joissa uraania riittää ilmastonmuutoksen hillinnän kannalta käytännössä rajoituksetta. Lue lisää artikkelistani aiheeseen liittyen. Ydinvoimasta on nopeaksi ja mittaluokaltaan riittäväksi osaratkaisuksi ilmastonmuutoksen hillintään, ja sen yksi vahvuus on nimenomaan sen vähäinen luonnovarojen käyttö (kts kuva alla, jossa uraani ei puutteelisen resoluution vuoksi edes näy).

”Jos ydinvoima olisi edullista, sitä olisi rakenteilla maailmalla enemmän.”

Niin varmaan olisi. Ydinvoiman vastustus on kuitenkin ajanut ydinvoiman poliittisesti ongelmalliseksi, joten monissa paikoissa se on joko suoraan kiellettyä tai poliittisesti mahdoton ajatus. Ajattele miten järjetön tilanne! Tehokkain ja nopein keino ilmastonmuutoksen hillintään mitä tiedämme, on lailla kielletty tai ihan mahdoton ajatus! Lisäksi erittäin raskas ydinvoimaregulaatio ja sen ympärillä oleva politikointi on tehnyt sen rakentamisesta tarpeettoman hidasta ja kallista, joten tässä hyvä kohde poliittiselle toiminnalle, jos ilmastonmuutoksen hillitsemisen helpottaminen kiinnostaa. Ei siis jäädä voivottelemaan, että onpa hankalaa, ei kannata edes yrittää (ja kielletään samalla muitakin yrittämästä), vaan tehdään kaikkemme tilanteen parantamiseksi!

Jos luodataan tätä vielä syvemmälle, niin huomataan, että myös tuuli ja aurinko olivat kalliita ja niitä ei rakennettu juuri missään. Annoimme niille kuitenkin mittavaa poliittista ja rahallista tukea (jonka lisäksi niiden rakentaminen ylipäätään on sallittua), ja nyt ne ovat paljon halvempia. Niitä rakennetaan johonkin jopa ilman julkisia tukia! Mitä jos tehdään sama ydinvoimalle? Sallitaan se, ja ponnistellaan, että sen turvallinen rakentaminen on helpompaa ja joustavampaa, ja rakennetaan energiamarkkinat niin, että ne arvottavat vähäpäästöisyyttä ja luotettavuutta, jotka kuitenkin ovat ne asiat, joilla on eniten väliä energiajärjestelmässä (hinnan lisäksi).

”Ydinvoimalla on lisäksi ainakin kaksi merkittävää ongelmaa. Se ei Suomessa poista markkinoilta hiiltä eikä turvetta, sillä ydinvoimalla ei tuoteta lämpöä… Ydinvoima ei myöskään ole ratkaisu liikenteen ilmasto-ongelmaan.”

Niin, noh, siis ydinvoimalla nimenomaan tuotetaan lämpöä (josta voidaan tehdä sähköä), mutta käsitellään se alla ja muistutetaan tässä yhteydessä siitä, että vesivoimalla, tuulivoimalla ja aurinkopaneeleillakaan ei tuoteta lämpöä, vaan sähköä. Eivätkä nämä teknologiat ole sen parempia ratkaisu myöskään liikenteen ilmasto-ongelmaan – joka kieltämättä on viheliäinen.

Pienreaktoreita, joilla lämmöntuotannon polttoaineiden (ja päästöjen) korvaaminen olisi hyvinkin tehtävissä, ei tosiaan ole tällä hetkellä kaupasta saatavilla. Jos luen Juhanaa optimistisesti, hän olisi kuitenkin valmis sellaisia hankkimaan, tai ainakin antamaan luvan muille näin tehdä, mikäli niitä saataville tulisi?

Ehkä meidän kannattaisi Suomessa hiljalleen valmistautua siihen, että kun niitä saataville tulee (tässä muutaman vuoden säteellä on alkamassa ja valmistumassa useampiakin First-of-a-kind projekteja), olemme valmiita kaikin puolin niitä rakentamaan ja lämmöntuotannon päästöjä niillä leikkaamaan. Julkisessa ja poliittisessa keskustelussa, regulaatiossa ja jopa lainsäädännössä on paljon tehtävää, ja tätä voidaan tehdä paljon jo valmiiksi. Päästövähennysten kiire on kova, ja sen luulisi näkyvän myös poliittisessa tahtotilassa ydinvoimaa ja pienreaktoreita kohtaan, ne kun voivat olla verrattoman toimiva työkalu päästöjen vähentämiseen monissa kohteissa!

Ilmastonmuutos ja Vihreät – kunnianhimoa vai ei?

Vastine Suomen kuvalehden juttuun Vihreistä ja heidän ydinvoimakannoistaan (maksumuuri).

Vihreiden sisällä jäsenten ydinvoimakannat eroavat toisistaan kuin yö ja päivä. Siinä missä osa porukasta on ymmärtänyt, että ilmastonmuutoksen hillintä vaatii heiltäkin muutosta totuttuun ajatteluun ja toimintaan, osa Vihreistä on yhä lukkiutunut päiväuneen, jossa meillä on edelleen varaa nihkeillä päästövähennyskeinojen kanssa ja poimia omaa positiota puolustamaan tarkoin valittuja ja jopa paikkansa pitämättömiä väitteitä. Tässä kirjoituksessa käyn hieman läpi näitä jälkimmäisen ryhmän äskeisessä Suomen Kuvalehden jutussa esittämiä kommentteja ja väitteitä.  

Aloitetaan tästä faktasta, joka näkyy oheisessa kuvassa: Ydinvoima on ollut kansallisella tasolla ylivoimaisesti nopein tapa vähentää energiantuotannon päästöjä. Kyllä, mukaan lukien pahasti viivästynyt Olkiluoto 3.

Puhtaan energian per capita lisäysnopeus-ennätykset 15 vuoden aikana. Lähde BP 2018.

Tämä on ollut päivänselvää jo pitkään, jos tilastoja tarkastelee vähänkään laajemmasta näkökulmasta. Silti muutamat Vihreiden isot nimet antavat edelleen lausuntoja, joissa he valittelevat niemenomaan ydinvoiman hitautta. Jos ja kun ilmastonmuutoksen hillinnällä on kiire, niin eiköhän silloin olisi tarpeen miettiä, miten ydinvoimankin rakentamisesta saataisiin entistä nopeampaa. Vinkki: se tapahtuu rakentamalla enemmän ydinvoimaa. Suurin syy läntisten voimalaprojektien ongelmien taustalla on vuosikymmenten tauko rakentamisessa.

Maria Ohisalo sanoo jutussa:

”Ilmastonmuutoksen kannalta ratkaisevassa roolissa ovat jo seuraavat 10–15 vuotta, joten uudet voimalat ovat auttamattomasti myöhässä.”

Niin. Edelleen, esimerkiksi juuri 15 vuoden aikana ydinvoimalla on hallussaan puhtaan energian tuotannon per capita lisäysennätys, moninkertaisesti. En oikein tiedä mitä tuosta pitäisi ajatella. Pitääkö ratkaisut, jotka kenties auttavat vasta 16 vuoden päästä, siis kieltää? Entä mitä tuumaamme 14 vuoden päästä, jos käykin niin, että emme onnistuneet, ja että tarvitsisimme mitä pikimmiten vielä enemmän puhdasta energiantuotantoa? Olisiko kenties siistiä, että parin vuoden sisällä olisi valmistumassa massiiviset määrät puhdasta energiantuotantoa, ja että meillä olisi olemassa osaaminen ja tuotantoketjut tehdä nopeammin lisää? Vai taputtelemmeko itseämme selkään että onneksi älysimme kieltää kaikki ”liian hitaat” projektit?

Otetaan perspektiiviä. 1990 luvun alussa Suomeen haettiin lupaa uudelle reaktorille. Silloin oli vielä hieman aikaa tehdä ilmastonmuutokselle jotain, ja jos lupa olisi tullut, olisi mylly jauhanut puhdasta sähköä jo vuosikausia. Se ei olisi liian kaukana tulevaisuudessa, vaan se olisi täällä nyt. Samalla olisi vältytty pitkältä ydinrakentamisen tauolta, joten uudemmat projektit olisivat voineen mennä paljon paremmin ja Suomi olisi tältäkin osin paljon vähäpäästöisempi. Se, että silloin tehtiin virhe on minusta heikko peruste sille että virheiden tekemistä pitäisi jatkaa edelleen.

Opetus on, että vaikka omat skenaariot ulottuvat vain 2030-luvulle, niin maailma jatkuu senkin jälkeen. IPCC:n tuoreessa raportissa nähdään että 2050 mennessä ydinvoiman pitää kasvaa 2-6 kertaiseksi nykyisestä. Isoin osa tästä potista tulee 2030-2050 välillä, joten meidän täytyy ruveta toimiin sen mahdollistamiseksi tänään. Miten? Mainitsin tämän jo yllä: rakentamalla lisää ydinvoimaa, jotta osaaminen ja toimitusketjut pysyvät terässä ja ne saadaan kasvatettua tarvittavaan mittakaavaan ajoissa. Meillä ei ole varaa 2030 luvulle tultaessa todeta, että ”oho, no ei tässä nyt enää ehdi mitään näitä käynnistää, kun ei ole tehty vuosikymmeneen mitään.”

Kalliita lupauksia

Sitten pitää vielä erotella hieman, mistä oikein puhutaan, kun puhutaan kalliista ydinvoimasta poliittisessa yhteydessä. Ydinvoiman rakentamisen kohdalla yleensä puhutaan luvan antamisesta. Siis ydinvoiman rakentamisen kohdalla kyse ei ole mittavista yhteiskunnan yhteisten rahojen satsauksista tukiin tai muihin, vaan siitä, että poliitikot sallivat tai kieltävät yritysten käyttää miljardeja omaa ja lainattua rahaansa rakentaakseen gigawateittain puhdasta ja luotettavaa energiatuotantoa. Jos tällaisia investointiehdotuksia tulisi missä tahansa muussa puhtaan energian tuotannossa, kaikki hyppisivät riemusta tasajalkaa!

Silti monet poliitikot suhtautuvat tähän ydinvoimalupien antamiseen ihan kuin se olisi jokin valtavakin henkilökohtainen satsaus nimenomaan heiltä ja yhteiskunnalta. Ajatelkaa, jos muut vähäpäästöiset energiamuodot joutuisivat käymään läpivuosikausia kestävän ja miljoonia maksavan poliittisen sirkuksen hankkeidensa yhteydessä?

Edelleen hinnasta, lainaus SK:n jutusta:

 [Satu] HASSIN mukaan uudet ydinvoimahankkeet kaatuvat hitautensa lisäksi myös kustannuksiin: uusiutuvan energian ratkaisuista on tullut niin edullisia, ettei ydinvoima kamppaile niiden kanssa enää edes hinnallaan.

Jos ydinvoimalat ovat niin kalliita, ettei niitä kannata rakentaa, niin lupahakemuksia tuskin tulee. Ja jos lupahakemus tulee, niin sehän tarkoittaa, että tämä ei pitänytkään paikkaansa, vaan ydinvoimaa kannattaa sittenkin rakentaa! Jee, lisää vähäpäästöistä energiantuotantoa ihan vaan (ilmaisen) luvan antamalla!

Jos uusiutuvat puolestaan ovat niin halpoja ja hyviä, että vain niitä kannattaa rakentaa, niin totta kai niihin investoidaan – ilman mitään tukia tai sitä, että muut vaihdtoehdot kielletään. Eihän uusiutuviin investoimista ole kukaan kieltänyt tai kieltämässä.

Sitten on tietysti myös se, että viime vuotisessa LUTin laskelmassa ydinvoima on kustannuksiltaan toisiksi edullisinta, siellä tuulivoiman tuntumassa. Mikäli tuulivoiman voimakkaan lisäämisen aiheuttamat lisäkustannukset lasketaan mukaan, ydinvoimasta tulee selkeästi halvinta puhdasta energiantuotantoa.

Entä pienreaktorit?

Hassi ja Mikkonen:

”Keskustelua käytiin jo 80-luvulla, mutta mikään firma ei myy sellaista [pienreaktoria] vieläkään. En toivo Suomen lähtevän jälleen uuden reaktoriprototyypin koekaniiniksi, sillä riskinä on aikataulujen venyminen ja kustannusten kasvu”, Hassi sanoo.

Mikkonen on samaa mieltä.

”Meillä ei ole aikaa odottaa ratkaisuja, jotka ovat vasta tutkimus- ja kehitysvaiheessa.”

Hetkinen. Esimerkiksi Ruotsalaista SECURE-kaukolämpöreaktoria myytiin Suomeen jo 1970-luvun lopulla, mutta poliittisen valinnan (pelkuruuden) seurauksena emme sitä ostaneet, ja päädyimme rakentamaan kivihiiltä EDIT: Tilalle tuli maakaasua, ei kivihiiltä (taloudellisesti ydinvoima oli paras vaihtoehto, ihan ilman mitään päästöhinnoittelua tai ilmastonmuutoksen hillintääkin). Siis miettikää mikä moka! SECURE olisi tähän mennessä säästänyt miljoonia ja miljoonia tonneja päästöjä, puhumattakaan rahasta!

Lisäksi, pitääkö tästä vetää johtopäätös, että tutkimus ja kehitys ja uusien asioiden pilotointi voidaan lopettaa, koska ne ovat tutkimus/kehitysvaiheessa ja aikataulut voivat venyä? Että Suomen ei tulekaan rikkaana maana näyttää esimerkkiä ja tietä päästövähennyksissä? Minä kun luulin että halusimme nimenomaan lisää kunnianhimoa ja toimia päästövähennyksiin.

Muotoilenpa asian toisin: Meillä ei ole aikaa olla satsaamatta kaikkiin toimiviin ratkaisuihin. Etenkin lämmöntuotannon puhdistamisessa pienreaktoreilla voi olla valtava rooli, ja etenkin siellä puhtaat vaihtoehdot ovat melko vähissä. Nimenomaan siellä tarvitaan tutkimus- ja kehitystoimintaa, sillä emme ole oikeastaan edes aloittaneet lämpösektorin päästövähennyksiä – se mitä on tapahtunut on puun polton lisäys, ja puu on nollapäästöistä vain paperilla.

Jos Suomi haluaa oikeasti olla päästövähennysten kanssa edelläkävijä, niin tämä kunnianhimo ja satsaukset koskee myös pienreaktoreita ja niiden mahdollisimman vauhdikasta selvittämistä, pilotointia ja käyttöönottoa. Ei pelkästään niiden sallimista poliittisesti (sehän nyt on ilmiselvää, eikö?) vaan ihan vaikka aiheeseen liittyvän tutkimuksen ja kehityksen rahoittamista.